国产丁香婷婷妞妞基地-国产人人爱-国产人在线成免费视频麻豆-国产人成-91久久国产综合精品-91久久国产精品视频

公務員期刊網 精選范文 量子力學最新研究范文

量子力學最新研究精選(九篇)

前言:一篇好文章的誕生,需要你不斷地搜集資料、整理思路,本站小編為你收集了豐富的量子力學最新研究主題范文,僅供參考,歡迎閱讀并收藏。

量子力學最新研究

第1篇:量子力學最新研究范文

量子力學課程是工科電類專業的一門非常重要的專業基礎課程。通過該課程的學習,使學生初步掌握量子力學的基本原理和基本方法,認識微觀世界的物理圖像以及微觀粒子的運動規律,了解宏觀世界與微觀世界的內在聯系和本質的區別。量子力學課程教學質量的好壞直接影響后續的如“固體物理學”、“半導體物理學”、“集成電路工藝原理”、“量子電子學”、“納米電子學”、“微電子技術”等課程的學習。

量子力學課程的學習要求學生具有良好的數學和物理基礎,對學生的邏輯思維能力和空間想象能力等要求較高,因此要學好量子力學,在我們教學的過程中,需要充分發揮學生的學習主動性和積極性。同時,隨著科學日新月異的發展,對量子力學課程的教學也不斷提出新的要求。如何充分激發學生的學習興趣,充分調動學生的學習主動性和能動性,切實提高量子力學課程的教學質量和教師的教學水平,已經成為擺在高校教師目前的一項重要課題。

該課程組在近幾年的教學改革和教學實踐中,本著高校應用型人才的培養需求,強調量子力學基本原理、基本思維方法的訓練,結合物理學史,充分激發學生的學習積極性;充分利用熟知軟件,理解物理圖像,激發學生學習主動性;結合現代科學知識,強調理論在實踐中的應用,取得了良好的教學效果。

1 當前的現狀及存在的主要問題

目前工科電類專業普遍感覺量子力學課程難學,其主要原因在于:第一,量子力學它是一門全新的課程理論體系,其基本理論思想與解決問題的方法都沒有經典的對應,而學習量子力學必須完全脫離以前在頭腦中根深蒂固的“經典”的觀念;第二,量子力學的概念與規律抽象,應用的數學知識比較多,公式推導復雜,計算困難;第三,雖然量子力學問題接近實際,但要學生理解和解決問題,還需要一個過程;由于上述問題的存在,使初學者都感到量子力學課程枯燥無味、晦澀難懂,而且隨著學科知識的飛速發展,知識的更新周期空前縮短,在有限的課時情況下,如何使學生在掌握扎實的基礎知識的同時,跟上時代的步伐,了解科學的前沿,以適應新世紀人才培養的需求,是擺在我們教育工作者面前的巨大挑戰。

2 結合物理學史激發學生學習興趣

興趣是最好的老師,在大學物理中,談到了19世紀末物理學所遇到的“兩朵烏云”,光電效應和紫外災難,1900年,普朗克提出了能量子的概念,解決了黑體輻射的問題;后來,愛因斯坦在普朗克的啟發下,提出了光量子的概念,解釋了光電效應,并提出了光的波粒二象性;德布羅意又在愛因斯坦的啟發下,大膽的提出實物粒子也具有波粒二象性;對于物理學的第三朵烏云“原子的線狀光譜,”玻爾提出了關于氫原子的量子假設,解釋了氫原子的結構以及線狀光譜的實驗。后來還有薛定諤、海森堡、狄拉克等偉大的物理學家的努力,建立了一套嶄新的理論體系-量子力學。在教學的過程中,適當穿插量子力學的發展歷史以及偉大科學家的傳記故事,避免了量子力學課程“全是數學的推導”的現狀,這樣激發學生的學習興趣和學習熱情,通過對偉大科學家的介紹,培養刻苦鉆研的精神。實踐表明,這樣的教學模式大大提高了學生的學習主動性。

3 結合熟知軟件化抽象為形象

量子力學內容抽象,對一些典型的結論,可以用軟件模擬的方式實現物理圖像的重現。很多軟件如matlab、c語言等很多學生不是很熟練,而且編程較難,結合物理結論作圖較為困難;Excell是學生常用的軟件之一,簡單易學卻功能強大,幾乎每位同學都非常熟練,我們充分利用這一點,將Excell軟件應用到量子力學的教學過程中,取得了良好的效果。

如在一維無限深勢阱中,我們用解析法嚴格求解得到了波函數和能級的方程。而波函數的模方表示幾率密度。我們要求學生用Excell作圖,這樣得到粒子阱中的幾率分布,通過與經典幾率的比較(經典粒子在阱中各處出現的幾率應該相等)和經典能級的比較(經典的能量分布應該是連續的函數),通過學生的自我參與,充分激發了學生的求知欲望;從簡單的作圖,學生深刻理解了微觀粒子的運動狀態的波函數;微觀粒子的能量不再是連續的,而是量子化了的能級,當n趨于無窮大時微觀趨向于經典的結果,即經典是量子的極限情況;通過學生熟知的軟件,直觀的再現了物理圖像,學生會進一步來深刻思考這個結論的由來,傳統的教學中,我們先講薛定諤方程,然后再解這個方程,再利用邊界條件和波函數的標準條件,一步一步推導下來,這樣的教學模式有很多學生由于數學的基礎較為薄弱,推導過程又比較繁瑣,因此會逐步對課程失去了興趣,這也直接影響了后面章節的學習,而通過學生親自作圖實現的物理圖像,改變了傳統的“填鴨式”教學,最大限度的使學生參與到課程中,這樣的效果也將事半功倍了,大大提高了教學的效果。

4 結合科學發展前沿拓寬學生視野

在課程的教學中,除了注重理論基礎知識的講解和基礎知識的應用以外,還需介紹量子力學學科前沿發展的一些動態。結合教師的教學科研工作,將國內外反映量子力學方面的一些最新的成果融入到課程的教學之中,推薦和鼓勵學生閱讀反映這類問題的優秀網站、科研文章,使學生了解量子力學學科的發展前沿,從而達到拓寬學生視野,培養學生創新能力的目的。例如近年興起并迅速發展起來的量子信息、量子通訊、量子計算機等學科,其基礎理論就是量子力學的應用,了解了這些發展,學生會反過來進一步理解課程中如量子態、自旋等概念,量子態和自旋本身就是非常抽象的物理概念,他們沒有經典的對應,通過對實驗結果的理解,學生會進一步理解用態矢來表示一個量子態,由于電子的自旋只有兩個取向,正好與計算機存儲中二進制0和1相對應,這也正是量子計算機的基本原理,通過學生的主動學習,從而達到提高教學質量的目的。另外我們還要介紹量子力學在近代物理學、化學、材料學、生命學等交叉學科中的應用,拓寬學生的視野。

第2篇:量子力學最新研究范文

本世紀以來,物理學哲學研究有了長足的進步,這與現代物理學所具有的一些新特點有很大關系:一是本世紀理論物理學研究在許多方面超前于實驗物理學的研究,人們無法對理論物理學的一些結構及時通過觀察和實驗進行檢驗,這就使得人們從認識論和方法論角度對物理學思想的合理性和物理學理論自身邏輯結構的自洽性的驗前評價變得十分重要;二是當今各種物理學理論(如相對論和量子論)在逐步統一過程中所顯現出的整體有機聯系的自然圖景和對在極端條件下(如宇宙爆炸初期)的物質特性的探索都促使物理學與哲學進一步融合起來,使物理學家感到了從哲學的高度去更深刻地把握物理學前沿提出的種種物理學理論和概念問題的必要性;三是當代物理學所研究的微觀和宇觀客體的物理性質與規律,由于不能被我們的感官所直接感知,這就必須從認識論的角度說明現代物理學理論描述的微觀或宇觀世界圖景的合理性與真實性,從而在微觀或宇觀世界與我們日常生活的宏觀世界之間建立起一道相互理解的橋梁。

正是現代物理學的這些特點,決定了當代物理學哲學的不同研究途徑,即從不同的角度出發,對物理學進行哲學反思,達到豐富和發展哲學認識論與方法論以及加強對物理學理論和概念自身理解的目的。

物理學哲學的研究途徑之一是從通過對物理學概念,尤其是新物理學概念,物理意義的闡釋入手,提高到哲學高度進行分析,進而促進了哲學的發展。這一方面是由于如量子力學創始人之一的海森堡所說:“一部物理學發展的歷史,不只是一本單純的實驗發現的流水帳,它同時還伴隨著概念的發展,或者概念的引進。……因為正是概念的不確定性迫使物理學家著手研究哲學問題”。(〔(7)〕,第185頁),另一方面則是因為物理學是研究最基本的物質運動規律的科學,所以許多最基本的物理學概念,如物質、運動、時間、空間、宇宙等也同時是哲學的基本概念,這些基本概念的變化不僅導致物理學理論的變更,也標志著哲學的重大發展。因此,對這些基本概念的理解,往往是各個哲學流派之間爭論的焦點。而對這些概念的哲學爭論,又總是圍繞著物理學的最新進展而展開,所以從物理學概念入手進行物理學哲學的研究是中外許多哲學家和物理學家最為關注的研究途徑。

科學研究從問題開始,而現代物理學的建立則是從概念問題的突破開始的。普朗克1900年為了解決黑體輻射問題提出了作用量子的概念,但他受經典物理學思維框架的約束,當時并沒有深刻的理解這個概念實質性的物理意義,只把它當成了一般的工作假說加以運用。只是當愛因斯坦(1905年)運用這個概念建立起光量子假說后,它的實質性的、突破傳統經典思維模式的巨大意義才得以凸現出來,并引起物理學界乃至于后來哲學界的廣泛關注。玻爾、海森堡等人沿此思路建立了原子結構模型,并最終建立了量子力學理論,對量子概念物理意義的探討又導致與傳統決定論思維模式相悖的非決定論思維模式的產生,這不僅使物理學的理論基礎發生了根本的變化,而且使傳統的認識論觀念也有了重大的轉變。

當人們對邁克爾遜—莫雷實驗的否定結果迷惑不解時,彭加勒、洛侖茲等人為了維護牛頓的絕對時空不得不提出“虛擬時間”的概念來解釋這一奇怪的結果。愛因斯坦則從麥克斯韋電磁學理論與經典力學伽利略變換之間的矛盾中看出了問題的實質所在。他看出了牛頓所謂的絕對時間并非是有物理意義的真實時間,而彭加勒、洛侖茲等人認為是“虛擬時間”的概念卻是在實際觀測中可以測量到的真實時間,這不僅使邁克爾遜—莫雷實驗的難題迎刃而解,而且一舉建立了狹義相對論。從這里又引發了一輪重新認識時間和空間這一對古老哲學概念的熱潮。

隨著廣義相對論的提出和現代宇宙學的建立,使人們對時間和空間的研究進入了一個新階段。哲學家們紛紛依據物理學的最新研究成果對時間空間概念進行新的闡釋,乃至于給一些古老的哲學命題,如康德的“二律背反”以新的說明。(參見〔(1)〕原蘇聯和我國的一些哲學工作者通過對相對論時間和空間概念與物質運動、物質分布狀態關系的分析,進一步論證了恩格斯當年對時間和空間這對哲學范疇的正確定義。隨著現代宇宙學的興起和發展,人們對“宇宙”概念也有了新的認識,于是,有關宇宙有限還是無限、哲學的“宇宙”概念與現代宇宙學所說的“宇宙”之間究竟是什么關系等問題的討論,又成了哲學界和科學界共同關心的熱點。可是,當人們正沉浸在廣義相對論解決宇宙演化問題所取得的成就時,卻不得不沮喪地發現,所有已知的物理學定律在廣義相對論時空曲面的奇點處都失效了。從理論上來說,所謂宇宙大爆炸最初的原始火球在數學上的表示就應該是一個奇點,也就是說,如果宇宙起源于奇點,我們難以用現有的任何物理學定律說明宇宙爆炸的原因。于是有的科學家戲稱說,既然宇宙是上帝創造的,那么只好把這個問題留給上帝,膽敢問這個問題的人,上帝將使他下地獄。

英國著名物理學家霍金是最早開始研究奇點問題的物理學家之一,近年來也是他提出了試圖用量子引力理論來繞開奇點問題的方法。他為了避免當年費因曼處理微觀粒子時假設的各態歷經的技術困難,并類比他用交換虛粒子來說明粒子間相互作用的方法,提出了“虛時間”的概念。雖然如他自己所說:“虛時間”是一個意義明確的數學概念,“就普遍的量子力學而言,我們可以把我們對虛時和歐幾里得時空的運用,僅僅視作一個計算實時空答案的數學方法(或手段)。”(〔(8)〕,第162頁)但由于量子引力理論假定宇宙沒有任何邊界,“宇宙將完全是獨立的,不受外界任何事物的影響。它既不會被創造,也不會被消滅,它將只是存在”。(〔(8)〕,第164頁)而“虛時間”的應用,則使人們繞開了宇宙起源于奇點和終止于奇點這種用奇點構成時空邊界的困難,讓物理學定律在任何時空區間都有效。正是有這個意義上霍金認為:“所謂的虛時實際上是實的,而我們所說的實時只是我們想象中虛構的事物”,“也許我們所說的虛時實際上是更基本的東西,而我們稱作實時的只是為了幫助我們描述我們想象中的宇宙模樣而創造的一種想法。”(〔(8)〕,第168頁)

霍金對科學理論的看法持有工具論的立場,但對于“虛時間”的概念是否如他所說是更基本的東西,不在于理論上是否更為合用,而在于它是否能夠作出可觀察的預言并在實踐中得到確證。在此以前,我們至少應當接受本世紀初的教訓,不要把我們現有的物理學理論所描述的時空概念又看成是絕對不可改變的,更不應該在沒有充分理解一些物理學家所提出的新物理概念的明確物理意義之前,甚至在沒有仔細閱讀霍金原著的上下文意思之前,就把他們與哲學中的后現代主義思潮拉扯在一起。在這里,重溫一下愛因斯坦的一段話,可能對我們會有所啟發:“為了科學,就必須反復地批判這些基本概念,以免我們會不自覺地受到它們的支配。在傳統的基本概念的貫徹使用碰到難以解決的矛盾而引起了觀念發展的那些情況,這就變得特別明顯。”(〔(15)〕,第586頁)

近期物理學哲學的發展中可能更加值得注意的動向是,隨著本世紀許多新興學科的興起,使許多新的科學概念越來越滲入到哲學研究之中,如系統、信息、控制、混沌、有序、無序等等概念,早已不再是某些專門學科的專業術語。由于這些概念的普適性,它們已成為各門學科中廣泛使用,乃至于在日常生活中經常提到的概念。它們不可避免地會逐步上升為哲學范疇。對這些新概念的產生和普及,物理學有很大的貢獻,正是由于本世紀對遠離平衡態熱力學的研究,才加深了人們對時間方向性,對物質系統的演化,對有序、無序、混沌等等物質狀態的認識,從而也極大豐富了哲學的內容。下面我們還將談到,正是由于這些研究引起了人們思維觀念的巨大變化。從而也使得傳統的哲學在許多方面發生了革命性的變革。

對概念的更高層次的元理論研究已不局限于物理學哲學的范圍,而是在更為廣泛的科學哲學層次里展開的,不過,由于物理學相對于其他學科而言更為成熟,更為精確,物理學史的研究也比其他學科史更為細致,所以許多科學哲學家仍利用對某些物理學概念的分析作為闡述自己觀點和與他人論爭的依據。例如,庫恩和費耶阿本德通過對“質量”這個概念在經典力學與相對論中的不同涵義,以及“電子”這個術語在不同時期指稱對象意義變化的分析,得出了前后相繼的科學理論或不同范式之間不可通約的觀點(參見〔(14)〕、〔(22)〕),從而引起了科學哲學界的極大爭議。而普特南等人則同樣根據對“電子”一詞涵義變化的分析,說明了他的有關自然種類名詞因果—歷史指稱理論,并駁斥了庫恩和費耶阿本德的不可通約性的觀點。

目前,隨著物理學和哲學的進展,沿著這個途徑的物理學哲學研究正在蓬勃發展。一方面,新的物理學概念不斷涌現,人們常常需要從物理學之外對這些概念進行闡釋才能理解它們更深刻更普遍的意義,而這些概念的廣泛應用也不斷充實了哲學的內容;另一方面,哲學自身的發展也需要不斷從自然科學,包括物理學概念的變革中吸取養料,提出新的問題、新的觀點,拓展新的思路。

物理學哲學研究的另一個途徑是通過物理學前沿哲學問題的討論,使一些傳統的哲學觀點產生根本變革。這條途徑在很大程度上離不開對新物理概念的分析。從這個意義上說,它與前面所討論的途徑并無根本的區別,只是這條途徑更著重于對物理學前沿所涉及到的一些基本哲學問題,如認識過程中主客體之間的關系,因果性的決定論與非決定論以及與其相關的必然性與偶然性的關系,可知論與不可知論,實在論和工具論等等,進行進入地探討。

本世紀在物理學界和科學哲學界影響最大的一場爭論就是愛因斯坦和以玻爾為首的哥本哈根學派關于量子力學理論基礎的爭論,這場爭論的和至今余波未息的爭論焦點集中在對愛因斯坦等人提出的EPR悖論的理解上。這場發生在量子力學創始人之間的爭論雖然是從對諸如量子力學中波函數的物理意義、海森堡不確定性原理(或譯測不準關系)和玻爾互補原理的理解開始,進而討論到量子力學是否完備的問題,但這場似乎只是純物理學,甚至是理論物理學的科學爭論,一開始就帶上了濃厚的哲學色彩。

這主要是因為微觀客體所表現出來的諸如波粒二象性等特征,用描繪宏觀現象的日常語言實在難以準確表達其確切含義,再加上對微觀客體的實驗安排也呈現出與經典物理學實驗許多不同的特征。如何正確理解量子力學的數學符號所蘊涵的物理意義?量子力學描述的微觀客體的行為特征究竟是不受主體干擾的客觀規律所致,還是宏觀儀器對微觀客體不可避免的干擾下主客體相互作用的結果?微觀客體所表現出的隨機性究竟是微觀客體的本質特征,還是認識主體認識局限性的結果?進而,到對微觀客體行為的理論描述究竟應當堅持決定論的思維模式,還是非決定論的思維模式,用愛因斯坦的話來說,就是我們是否相信上帝會擲骰子?物理理論的每個元素是否都必須在實在中有它的對應物,亦或物理理論只是一種對實在的本體論承諾,甚至只是我們為了解釋現象或解決問題的方便而使用的一種工具或符號系統?這些問題早已不是物理學本身所能解決的,但又是物理學家們不得不解決的,人類不倦的求知欲促使他們轉而尋求哲學的幫助。這就使得本世紀初許多量子力學的創始人都是哲學家,普朗克、愛因斯坦、玻爾、玻恩、海森堡、薛定鍔等人在哲學界的影響并不比他們在科學界的影響小。他們的哲學觀點往往是本世紀科學哲學討論問題的出發點,由此而引發的實在論與非實在論之爭仍是科學哲學界的熱點問題之一。他們的哲學專著又成了許多一流科學家案頭必備的讀物,以便隨時從中得到智慧的啟迪。實際上,愛因斯坦與玻爾這場上升到哲學的爭論,經過貝爾等人的努力,重又變成了用物理學實驗可以進行經驗檢驗的問題,檢驗的結果雖不足以最終決定誰是誰非(盡管哥本哈根學派明顯占了上風),但卻明確說明了物理學與哲學的密切關系,物理學哲學絕不是純思辨的玄學。

當然,一流科學家也是哲學家的現象絕不僅限于量子力學領域。彭加勒、布里奇曼等人不僅在物理學界享有盛譽,甚至還是一些哲學流派(約定主義,操作主義)的創始人。維納、普里高津等人雖然算不上正統的哲學家,但他們的哲學素養卻為世人所公認,他們的科學成就對哲學思維方式的影響應當說有劃時代的意義。從康德提出星云假說開始在當時占統治地位的形而上學世界觀上打開了第一個缺口,但完成這個星云假說的拉普拉斯卻把從牛頓開始的機械決定論思維推向了極端,并且產生了巨大的影響。如果說量子力學哥本哈根學派的非決定論思想是對這種機械決定論思想發起的一場重要挑戰的話,那么由于量子力學只涉及到微觀領域,還不足以在思想界和科學界抵消拉普拉斯的影響。19世紀德國古典哲學家們總結的辯證法思想雖然曾對19世紀科學的發展產生過影響,但由于其思辨色彩太濃也受到了許多科學家的抵制。但貝塔朗菲、維納等人創立了系統科學,尤其是普里高津等人從熱力學等實證的經驗科學本身得出系統演化的思想以后,普遍聯系和發展的觀點對于科學家們來說,不再是外在的哲學教條,而是在科學中必須嚴格遵守的思維準則。更重要的是,自組織理論、非線性科學所揭示偶然性與必然性之間的新聯接清楚地表明,非決定論的思維方式絕不僅限于微觀領域,嚴格因果決定論在我們日常生活中也不是普遍適用。我們不能再用嚴格因果決定的觀點來作為可知與不可知的界限,我們知道我們認識的某些界限(例如長期準確天氣預報的不可能)也是可知,甚至是認識深化的表現。對看似無序的混沌現象的研究,卻使我們能夠說明許多過去簡直無法理解的復雜現象,例如天氣變化,中樞神經系統運動等等。物理學哲學在這方面的研究方興未艾,盡管已有了一些成果,但還只能算是剛剛起步。物理學哲學的發展,已經引起了越來越多在物理學前沿領域工作的第一流科學家們的注意,對他們的研究工作產生了一定的啟迪作用。

利用當代物理學及其相關學科的最新成果構建新的自然圖景,并對此進行哲學反思是物理學哲學的又一研究途徑。其實,這個研究傳統由來已久,哲學既是一種理論化、系統化的世界觀,對世界作一個總體的描繪和系統全面的認識就是它的首要任務。古代自然哲學憑借哲學家自己的直觀和猜測來構建整體的世界自然圖景,結果是五花八門,莫衷一是。自從近代科學誕生以后,哲學家們(即使是宗教哲學家)或多或少都要依居他們所知的自然科學成果來構建自己的自然圖景,但他們對這幅圖景的理解或解釋卻可以由于他們的信仰而有很大的差異,甚至根本對立,尤其是當他們面對最新的科學成果,而這些科學成果表現出了一些與傳統哲學不同的思維方式時,更會使哲學家們對這些科學成果的理解上產生更大的差異,由此而引起的爭論往往成為哲學界的熱點。

現代物理學的發展使古老的涉及到自然圖景的爭論,如物質是否無限可分和宇宙是否無限等問題又增添了許多新的內容。

上世紀末物理學中關于X射線、電子和放射性現象的三大發現打破了原子不可再分的古老神話,揭開了人類對物質結構探索的新篇章。隨著原子結構和基本粒子的大量發現,物質無限可分的觀點似乎得到了科學實驗的有力證明。但正當人們信心百倍地探索到更深層次的亞基本粒子結構——夸克層次的時候,卻碰到了在實驗中無法測到自由夸克的所謂“夸克禁閉”現象。那么,這個目前得到量子色動力學理論說明的現象是否意味著物質有不可再分極限的古老原子論觀點又有抬頭的可能呢?對這個問題的爭論正在繼續進行。

相對論的建立不僅賦予時間和空間概念以新的含義,而且極大地改變了人們對自然圖景的看法,尤其是廣義相對論對宇宙時空幾何結構的描述,使從牛頓時代建立起來的宇宙圖景發生了重大的變革。現代宇宙學的誕生向人們描繪了一幅宇宙演化的生動圖景,一方面更充分地說明了宇宙中事物普遍聯系和無限發展的辯證唯物主義觀點,另一方面也使人們對宇宙時空結構是否無限的問題產生了新的疑惑。顯然,過去停留在從純哲學思辨或純邏輯學論證(如康德的“二律背反”)上來討論宇宙有限無限這一古老問題是遠遠不夠了。離開了對現代宇宙學,天體物理學,乃至于非歐幾何學的深刻理解來奢談這一問題,已顯得是隔靴搔癢,不得要領了。

實際上,今天我們討論自然圖景的問題還不能僅僅停留在物理學層次上,我們這個時代已經形成了關于自然進化的自組織理論和全球生態學的理論,這些綜合性的學科已經大大豐富和更新了我們的自然圖景。這迫使我們不僅要立足于當代物理學發展的最新成果,而且還要聯系到其他學科發展的最新成果,樹立把自然界看成是不斷演化的有機體的認識原則,去構筑最新的完整的自然圖景。這顯然對哲學家提出了更高的要求。當然,即使如此,物理學仍然是各門經驗自然科學的基礎。任何對自然圖景的描述,都不可能脫離這個基礎。這一發展趨勢只是為物理學哲學的這一研究途徑開辟了更為廣闊的發展前景。

物理學方法論的研究也是物理學哲學的一個重要內容。物理學理論的發展總是與物理學方法的更新與發展緊密相連,相輔相成的。例如,近代物理學的誕生,就得益于伽利略,牛頓等人在研究方法上的大膽創造與革新,他們把觀察、實驗等經驗方法與數學、邏輯等理論方法有機結合起來,還創造了諸如將形象思維和邏輯思維巧妙結合的理想實驗方法(伽利略),甚至發明新的數學工具——微積分(牛頓)。這些方法上的成就不僅大大推進了物理學的進展,而且具有重大的方法論意義,為以后物理學的發展起了巨大的示范作用。現代物理學的發展更清楚地表明,物理學每前進一步,都伴隨著方法上的重大革新與改進;而物理學作為一門基礎科學,它的每一步發展,又為人們創造新的方法、設計新的實驗儀器和設備提供了新的理論基礎,從而不僅為本學科的發展開辟了新的領域,創造了新的條件,而且還大大影響和促進了其他學科的發展。本世紀物理學借助相對論和量子力學的相繼建立取得了重大的進展,而如何將二者更緊密結合起來創造一種統一的物理學似乎是下個世紀物理學發展的一個方向。如何為實現這個目標取得方法上的突破便成了當前物理學方法論研究中的一個熱門問題。

美國哲學家蒯因曾經把知識體系比喻成為一個整體場。他說:“整個科學是一個力場,它的邊界條件就是經驗,在場的周圍同經驗的沖突引起內部的再調整。”(〔(18)〕,第694頁)也就是說科學的理論陳述和與之相應的數學、邏輯和形而上學陳述一起組成了這個整體的知識場,“根據任何單一的相反經驗要給哪些陳述的再評價的問題上有很大的選擇自由,并無任何特殊的經驗是和場內部的任何特殊陳述相聯系的”。(同上)為了適應經驗的變化,例如說要解釋一個新的觀察現象,不僅可以改變理論陳述,也可以調整其他的陳述,如改變一種數學方法,調整我們的本體論信念,乃至于修改有關的邏輯規則,“有人曾經提出甚至邏輯的排中律的修正作為簡化量子力學的方法”(同上)。蒯因的上述想法并非是純哲學的思辨。現代物理學的發展已更清楚地表現出了理論與方法之間這種聯動的特征。

首先,現代物理學對物質結構和宇宙起源的探索,涉及諸如“夸克禁閉”和真空特性等問題,解決這些問題,一方面依賴于理論的進一步突破,另一方面也依賴于實驗手段的改進。

其次,本世紀初,相對論與量子力學的思想一經形成,就可以在19世紀下半葉新興的數學分支中找到相應的數學工具,如非歐幾何學、張量分析、線性代數等等。在有關基本粒子的規范場論中,群論也得到了很好的應用,但隨著現代物理學的進一步發展,數學手段已顯得不夠得力。例如,目前關于大統一理論的研究難以取得有效的突破,癥結究竟是在相對論與量子力學自身難以統一,需要建立一種能取代二者的新理論,還是缺乏必要的數學處理方法就是尚待解決的問題。

第三,在量子力學的賴辛巴哈解釋中,賴辛巴哈試圖建立一種消除形式邏輯排中律的三值邏輯來消除用經典語言描述微觀客體行為時與量子力學結論相悖的因果異常。這種新的邏輯形式揭示了用傳統形式邏輯描述不確定現象時的困難。(參見〔(5)〕)沿著賴辛巴哈的思路,有人進一步發展出應用抽象代數學中“格演算”的工具,用基本聯詞“遇”與“接”來取代“與”和“或”用以更好地刻劃量子領域中的“亦此亦彼”現象,并使這種最子邏輯可以用一種廣義的命題演算工具表述。(參見〔(23)〕)雖然這一設想還沒有得到廣泛應用,但畢竟給我們一個啟示。量子物理的理論具有高度的辯證性質,“非此即彼”的形式邏輯思維已不足以解釋量子物理實驗中眾多的“亦此亦彼”的現象,而一種新的邏輯思維方式可能是現代物理學取得進一步突破的關鍵。這正如日本物理學家武谷三男所說:“量子力學的情況,如果從我們通常的觀念看來,是充滿著矛盾和難以克服的困難,但量子力學卻是以獨特的數學結構卓越而合理地把握了它,要理解這種邏輯結構,唯有依靠辯證邏輯。”(〔(3)〕,第100—101頁)形式邏輯產生了古希臘時期,是人類對宏觀事件進行思維時對規律的總結。但當我們深入到前人未曾接觸過的微觀和宇觀領域時,由于物質決定意識,我們的思維方式是否也應該發生某種變化呢?現在的問題是,針對現代物理學中出現的一些難以解決的問題,如EPR悖論,我們除了繼續在物理學理論上尋求突破之外,是否也可以換一種邏輯思維方式,甚至如本世紀一些杰出物理學家,如玻爾、普里高津等人所說的那樣,現代物理學可以從古老的東方文化中吸取有益的營養,來幫助尋求現代物理學的突破口呢?

以上我們雖然分別評述了物理學哲學研究的不同途徑,但這并不意味著物理學哲學研究途徑之間的差別就是涇渭分明的,恰恰相反,正如我們在上面敘述中已經表露出來的那樣,這些研究途徑之間是緊密相連、相輔相成的,其區別只在于我們研究的問題傾重點不同罷了。任何最新自然圖景的構建都要建立在自然科學前沿的研究成果之上,對自然科學前沿問題的正確理解就是構建新自然圖景的關鍵所在。但任何新理論成就的取得又都離不開概念的更新和對這些概念的澄清。上述研究當然也離不開對物理學方法的反思和創造。總之,當代物理學哲學是對物理學的歷史與現狀進行全面反思的一門哲學分支學科,它的研究既會對物理學的進一步發展有一定的啟發作用,也由于涉及到哲學的本體論、認識論和方法論的各個方面,又會對豐富和發展當代哲學做出應有的貢獻。

近年來,我國一些物理學家和自然辯證法工作者運用辯證唯物主義思想,從以上各條途徑上全面展開了研究,尤其是對物理學前沿科學成果所產生的哲學問題的辯論,例如,涉及到大爆炸宇宙學的有關宇宙有限無限問題,涉及到“夸克禁閉”現象的物質是否無限可分問題,對有關EPR悖論的阿斯佩克特實驗結果的理解問題等等,都引起了哲學界和部分物理學家的廣泛關注。我們還注意到,國內一些哲學教科書已經根據上述問題的討論充實和更新了有關的教學內容,這是值得欣慰的。但我們也應當看到,我國目前物理學哲學研究的水平與國外同行相比還有一定差距。其主要表現就是對當代物理學基本思想的理解還不深,還難以提出獨到的令物理學界和哲學界都信服的觀點,而當年賴辛巴哈、波普爾、邦格等哲學家參與有關量子力學基礎問題的爭論時,都曾提出過令當時還健在的量子力學創始人和眾多諾貝爾物理學獎金得主都不得不重視的觀點。(參見〔(3)〕、〔(4)〕、〔(5)〕)這主要是因為我國第一流的物理學家關心物理學哲學的人數還太少,而受過專門物理學訓練的哲學工作者(包括自然辯證法工作者)也不多,二者之間交流的機會就更少。我們熱情地期待,會有更多的哲學和物理學工作者參加到物理學哲學研究的行列中來。

主要參考文獻

(1)Lawrence Sklar: Philosophy of physics, University of Michigan Press, 1992.

(2)J. Earman: The History and Philosophy of Cosmology, Princeton Univesity Press, 1993.

(3)K.Popper: Quantum Theory and the Schism in Physics, Rowman and Littlefield Prb. 1982.

(4)Mario Bnngc: Treatise on Basic Philosophy Vo1.7. Philosophy of science and Technology.D. Reidel Pub. Co. 1993.

(5)H.賴辛巴哈:《量子力學的哲學基礎》,商務印書館,1966年。

(6)N.玻爾:《原子物理學和人類知識》,商務印書館,1978年。

(7)W.海森堡:《嚴密自然科學基礎近年來的變化》,商務印書館,1973年。

(8)S.霍金:《時間史之謎》,上海人民出版社,1991年。

(9)S.霍金:《時間簡史續編》,湖南科學技術出版社,1995年。

(10)S.霍金:《霍金講演錄》,湖南科學技術出版社,1995年。

(11)戴維斯、布朗合編:《原子中的幽靈》,湖南科學技術出版社,1995年。

(12)彭羅斯:《皇帝新腦》,湖南科學技術出版社,1995年。

(13)武谷三男:《武谷三男物理學方法論論文集》,商務印書館,1975年。

(14)T.庫恩:《科學革命的結構》,上海科學技術出版社,1982年。

(15)《愛因斯坦文集》第1卷,商務印書館,1976年。

(16)普特南:《理性、真理與歷史》,遼寧教育出版社,1988年。

(17)伊·普里戈金、伊·斯唐熱:《從混沌到有序》,上海譯文出版社,1987年。

(18)洪謙主編:《邏輯經驗主義》,商務印書館,1984年。

(19)吳國盛主編:《自然哲學》,中國社會科學出版社,1995年。

(20)殷正坤等主編:《智慧的撞擊》,湖北教育出版社,1992年。

(21)殷正坤、邱仁宗:《科學哲學引論》,華中理工大學出版社,1996年。

第3篇:量子力學最新研究范文

關鍵詞:應用物理;課程體系;教學內容;優化整合

中圖分類號:G642.0 文獻標志碼:A 文章編號:1674-9324(2013)50-0040-02

一、前言

物理學的基本原理滲透在自然科學的各個領域,被稱為自然哲學,已成為相關應用技術領域的基礎和源泉。應用物理專業是一個以物理學為基礎,以“應用物理”為核心和特點,強調將物理學知識與實際應用相結合的專業,以培養既有一定物理理論知識,又有一定實驗技能與工程技術的理工復合型人才為目標的專業[1]。可是目前許多高校的應用物理專業的培養目標無法實現,其培養質量令人堪憂,其中最迫切最重要的是應該對應用物理專業課程體系進行大力合理改革,對其傳統教學內容進行優化重整。

二、應用物理專業課程體系改革和教學內容的優化重整的必要性和緊迫性

2007年2月17日教育部下發了《教育部關于進一步深化本科教學改革全面提高教學質量的若干意見》。其中強調要深化教學內容改革,建立與經濟社會發展相適應的課程體系,要根據經濟社會發展和科技進步的需要,及時更新教學內容,將新知識、新理論和新技術充實到教學內容中,為學生提供符合時代需要的課程體系和教學內容。要采取各種措施,通過推進學分制、降低必修課比例、加選修課比例、減少課堂講授時數等,增加學生自主學習的時間和空間,拓寬學生的知識面,提高學生的學習興趣,完善學生的知識結構,促進學生個性發展。

目前的應用物理課程體系仍然主要由普通物理課程(包括力學、熱學、電磁學、光學、原子物理學)、理論物理課程(包括理論力學、熱力學與統計物理學、電動力學、量子力學)以及固體物理學構成。應用物理專業的學生經過高中物理、普通物理和理論物理的學習,發現許多課程內容重復出現,以至于相當一部分人認為沒有多大差別,只是所用數學工具不同罷了,“高中用,普物用d,理物用”,這充分反映了應用物理專業主干課程體系和教學內容存在的嚴重問題[2]。即當今的應用物理專業課程體系和教學內容仍沒有跳出傳統物理學專業和物理教育專業的框架,課程體系僵化,過分強調“系統化”、“邏輯化”,傳統的基礎和理論物理課程內容重復而陳舊、占用課時過多。沒有體現物理世界的發展性,現代性、統一性以及各學科之間的內在聯系、相互交叉、相互滲透。普遍存在“重經典、輕現代、重理論、輕應用”的弊端,反映現代科學和高新技術發展成果的課程和教學內容太少,應用物理專業的“應用”特色體現不明顯,學生的科學素養、理論和實際相結合的能力較差,無法實現應用物理專業培養目標[3,4]。

“知識爆炸”時代,科學技術的發展日新月異,其在經濟發展進程中的作用越來越大,同時也產生了許多新興學科。教學內容和課程體系是人才培養目標、培養模式的載體,是教育思想和教育觀念的直接體現,是提高人才培養效率和質量的決定性因素[5]。因此培養應用物理專業人才的教學內容和課程體系理應滿足新時期科技、經濟飛速發展對人才培養的需求,所以改革現有課程體系,優化整合教學內容,提高教學效益已勢在必行,刻不容緩。

三、課程體系改革和教學內容優化整合原則

課程體系的設置和教學內容的選取要符合教學規律,符合學生的認知規律,由現象到本質,由簡單到復雜,同時注意到自然界是普遍聯系的,不人為割裂自然科學的內在聯系,理論和原理是經典的,但應用要是現代的,按照“少而精”的原則,對傳統教學內容實行量的精選、壓縮與質的提高。對現有的普通物理(包括力學、熱學、電磁學、原子物理學)和理論物理(包括理論力學、熱力學與統計物理學、電動力學、量子力學)進行優化整合,絕不搞簡單縮減,重新設置課程體系,并對課程開設順序和時間做出科學合理的安排,同時注入現代化的教學內容,將近代物理和科技發展的最新成果納入新的課程體系和教學內容,及時反映科學技術研究的新成果,使學生及時了解學科發展前沿的新成就、新觀點、新動向。縮減傳統課程門數及學時數,以便增開其它應用物理課程及學時數。

四、課程體系改革思路和優化整合的教學內容

1.力學和理論力學優化整合成力學理論。如今許多應用物理專業第一學期就開設普通物理課程力學,到第五或第六學期再開設理論力學,而理論力學前面相當大一部分是和力學內容重復的,如質點運動學、質點動力學、質點組運動學、質點組力學、剛體力學等內容重復量大,這不僅降低了學生學習新知識的興趣,且浪費了很大一部分教學課時。同時力學課程要求采用微積分、矢量分析、微分方程等高等數學知識研究處理“變”的物理問題,這和學生剛開始接觸高等數學知識相矛盾,教師在授課時不得不降低要求講解,造成學生后續學習理論性強的理論力學的難度增大,教學效果降低。因此打破原有力學和理論力學界限,將它們優化重組成力學理論課程,刪除牛頓力學重復部分,去除相對論部分,將這部分移到電磁理論中講解,力學理論安排到大學第二學期開設,這時學生們的高等數學工具應用較為熟練,已具備了處理“變”問題的科學思維方法和能力,有利于教學質量的提高。精簡、優化整合后的力學理論包括:質點力學、剛體力學、非慣性系力學、振動與波、連續體力學、虛功原理、拉格朗日方程、哈密頓正則方程、哈密頓原理、泊松括號與泊松定理、正則變換、哈密頓-雅可比理論、非線性力學簡介。力學理論課程既包括牛頓力學,又包括分析力學,將研究力學問題的方法有機辯證地聯系起來,物理概念清晰準確,理論體系簡潔明了,兼顧了經典與現代、基礎與前沿內容,為后續理論課程的學習構筑了橋梁和基礎。

2.熱學和熱力學與統計物理學優化整合成熱物理學。據統計,熱力學與統計物理學中的熱力學部分和統計物理學部分分別占總內容的46%和54%。熱學課程中的熱力學定律部分和熱力學與統計物理學中熱力學部分內容(溫度與平衡態、物態方程、熱力學第一定律、功、熱容量與焓、理想氣體、熱力學第二定律、熵、卡諾定理等)重復率高達1/3[6]。在分子動理論和經典統計部分也有重復,如麥克斯韋速率分布律和速度分布律、玻耳茲曼分布律、能量按自由度均分定理、氣體內的輸運過程,所以將熱力學部分與熱學中的重復部分刪除,將這兩門課程進行優化整合,可以縮減約1/3的課時。優化整合的主要思想是貫穿從宏觀到微觀,從單個質點到大數量粒子構成的系統這一線索。在熱學部分介紹經典熱學、熱學最新動態、熱學在新科技中的應用,統計物理學部分以系綜理論為主線,融宏觀與微觀理論于一體,立足于微觀量子理論,從等幾率原理出發,循序漸進地闡明統計物理學理論,運用統計物理學理論導出熱力學基本定律,將統計物理學概念與宏觀熱現象相聯系和對應,實現熱現象的宏觀理論與微觀理論的有機融合。優化整合后的熱物理學內容包括:熱力學第零定律與溫度、狀態方程、氣體分子運動論的基本概念、氣體分子熱運動速率和能量的統計分布率、氣體輸運過程、功、熱量、熱力學第一定律與內能、熱力學第二定律與熵、固體和液體、相變、統計物理學基本原理、孤立系統、封閉系統、熱力學函數及其應用、氣體性質、開放系統、量子統計理論、漲落理論、非平衡態統計物理。

3.電磁學和電動力學優化整合為電磁理論。電磁學和電動力學都是研究電磁場基本性質、運動規律及其與帶電物質之間的相互作用。電磁學側重于電磁現象的實驗研究,從對電磁現象的研究中歸納出電磁學的基本規律,而電動力學側重于理論研究,以麥克斯韋方程組和洛倫茲力為基礎,研究靜態、時變態條件下電磁場的空間分布和運動變化規律,以及帶電粒子與電磁場的相互作用等問題。考慮到電磁學與電動力學在內容上是相互統一,相互滲透的,可以將它們優化整合成電磁理論課程,將電磁學與電動力學的內容適當貫通,既分層次,又平滑過渡,避免不必要的重復。具體如下:由庫侖定律引出電場、電場強度的定義,電通量、高斯定理及場強的計算,由電場力作功的特點引出環路定理、電勢、電勢的計算;由畢奧-薩伐爾定律引出穩恒磁場的計算、環流和旋度、散度;由電場強度與電勢的關系引出真空中的泊松方程與拉普拉斯方程;介紹介質的電磁性質、場與介質的相互作用、靜電場邊值關系與唯一性定理,運用泊松方程與拉普拉斯方程計算真空與介質中的場強與電荷分布,介紹靜電場分離變量法、鏡像法;由穩恒電流導出靜磁場,由電場中的標勢引出矢勢、磁標勢;對電磁感應、麥克斯韋方程組、電磁波輻射與傳播、狹義相對論均單獨設章節介紹。對超導、等離子體、巨磁電阻等做簡要介紹,豐富理論與實際應用的聯系,電路和交流電內容放電工學課程中講解。

4.原子物理學和量子力學優化整合為近代物理學。原子物理學側重于原子光譜實驗現象的解釋、物理思想和物理模型的建立,量子力學是在對原子光譜研究的基礎上發展建立起來的理論體系,側重于微觀本質,理論性強。原子物理學的實驗研究促進量子力學的不斷發展,它們聯系緊密,相互促進,其研究對象存在重復,導致目前許多原子物理學教材中的量子力學導論部分內容和量子力學教材存在大量重復,如玻爾氫原子理論、波粒二象性、不確定性原理、波函數及其統計解釋、薛定諤方程、平均值計算、氫原子薛定諤方程解、康普頓散射效應、堿金屬原子光譜精細結構、塞曼效應等。因此必須對這兩門課程進行優化整合,形成新的知識結構體系,其思路是:通過對原子現象的發掘,引出其量子力學的理論本質,同時通過量子力學理論的建立和運用,來研究原子等微觀體系的特性。優化整合后的基本內容為:經典物理遇到的困難、玻爾氫原子理論、狀態與薛定諤方程、力學量與算符、中心力場、電磁場中粒子的運動、矩陣力學、微擾理論、電子自旋、多電子原子、外場中的原子、多體問題、分子結構和能譜、散射。這樣優化整合后課程所需學時會比優化整合前大大減少。

五、整合后專業課程的開設時間安排

根據學生的認知特點和規律、應用物理專業課程之間的關聯,優化整合后的課程開設順序可以這樣安排:大學一年級注重增加高等數學教學課時,將高等數學進度盡量前推,大學第二學期開設力學理論、第三學期開設光學和電磁理論,同時開設數學物理方法為后續課程做好準備,第四學期開設近代物理學,第五(或四)學期開設熱物理。這樣的調整安排能留出更多時間來開設其他應用物理專業課程,有利于學生的就業或繼續深造。

六、教學改革的預期效果

1.重構應用物理主干課程體系,避免了基礎課程和理論課程教學內容的重復,優化教學內容,縮減課程科目,節省大量課時,將會大大提高教學效率。為應用物理課程的開設、選修課的開設及學生的個性化發展提供了時間條件,突出了應用物理、技術課程的地位和專業特色。

2.為應用物理培養目標的實現,培養合格的應用物理人才提供了可靠保障,課程體系的改革和教學內容的優化重整適應和滿足社會發展和科技前沿的需求。教學內容富有現代性,開放性,滲透新的教學內容和思想,使應用物理專業學生在理論與實踐技術方面具有復合型的知識結構,為他們今后的創新發展提供堅實基礎。

參考文獻:

[1]王蜀霞,王新強.應用物理專業課程體系改革實踐[J].重慶大學學報(社會科學版),2001,7(05).

[2]陳波.應用物理學專業《熱學》與《熱力學與統計物理》課程整合之初探[J].中山大學學報論叢,2004,24(01).

[3]富笑男,劉琨.應用物理學專業人才培養模式的探索與實踐[J].鄭州航空工業管理學院學報(社會科學版),2009,28(04).

[4]石東平,龍曉霞,程正富,代武春,楊守良.物理學專業應用型人才培養課程體系改革探索與研究[J].重慶文理學院學報(自然科學版),2009,28(06).

[5]陳波.應用物理專業物理類基礎課的課程體系改革之探討[J].中山大學學報論叢,2004,24(03).

第4篇:量子力學最新研究范文

關鍵詞:自然哲學 量子革命 系統辯證法

關于20世紀科學革命,有人說只須記住三件事:相對論、量子革命和混沌學(系統科學中最突出的新分支)。正是這三大科學革命為人類建構全新的自然圖景(也就是新穎的自然哲學)作出了決定性的貢獻。這里所謂自然哲學是指人對自然的哲學反思。自然哲學的中心問題就是基于人與自然的關系來研究自然本體最一般的性質和人類的世界圖景。

自然哲學在哲學史上有過兩個全盛時期(古希臘及近代機械論),只是在謝林、黑格爾之后衰落了。由于20世紀三大科學革命的強大影響,自然哲學正在當代復興起來,這是十分令人鼓舞的。我們先從三大科學革命說起。

首先要提到的是相對論革命對改造人類世界圖景的貢獻。在1905年的狹義相對論中,時空性質依賴于參照系等概念是對“觀察無關性”的經典信念的初次沖擊;1915年的廣義相對論把引力場(它具有整體全息相關性)確立為新的“獨立的實在”,這是對牛頓的實體觀的又一次打擊。接著要論述的是量子革命,它比相對論革命更為深刻地改變著人類的世界圖景。因為1925年以后所創建的量子力學進一步使笛卡兒與牛頓以來的主客絕對二分原則、實體主義原則乃至嚴格決定論原則都受到猛烈沖擊。最后要強調的是系統科學革命。20世紀中葉以來近半個世紀系統科學的蓬勃發展表明,從總體上說,系統自然觀集中體現了當代自然圖景的精華,因此系統自然觀幾乎成了當代自然科學的世界圖景的代名詞,貝塔朗菲稱之為“一種新的自然哲學”。20年代所出現的懷特海的“機體論哲學”則是這種自然哲學之先聲。

當代的系統自然觀借助于維納的控制論(1949)、貝塔朗菲的一般系統論(1948)、普利高津的耗散結構論(1969)和哈肯的協同學(1971)等理論復活了亞里士多德的機體論和內在目的論的自然哲學。〔1〕控制論通過對“動物(即生命系統)和機器(即非生命系統)的通用規律”的研究表明,自動機器通過反饋調節機制可以表現出與神經控制同樣的合目的性或規律。[1]維納在《控制論》中對牛頓的嚴格決定論進行了深刻有力的批判,肯定了統計力學家吉布斯把偶然性引進到科學中來的重大的方法論意義,并突破了目的論與機械論之間的兩極對立。莫諾在《偶然性與必然性——略論現代生物學的自然哲學》(1971)一書中,則用生物微觀控制論表明,借助于生物化學和分子生物學層次的反饋機制以及微觀-宏觀相互作用,完全偶然的基因突變最終可以納入物種進化的必然軌道;耗散結構論表明,在遠離平衡態條件下開放系統可以通過非線性正反饋機制的作用表現出有序化和合目的性;協同學還進一步發現序參量是整個自組織過程的主宰如此等等。總之,所有這些自動機器和自組織理論都表明,無須超自然的神力和神秘的“生命力”,自然系統也象自動機一樣可以憑借內在機制的作用呈現合目的性。從這個特定意義上說,認為宇宙=巨大的超級自動機的“機械論”是對的,而非神學性的宇宙“內在目的論”也是對的。從歷史上看,牛頓的機械論自然哲學是對亞里士多德的目的論自然哲學的否定。現在,我們的立足于系統科學的新自然哲學則應看作一種“否定之否定”。它是對機械論與目的論自然哲學的更高的辯證綜合。

當代自然哲學(它以系統自然觀及其系統辯證法為核心或靈魂)最有革命性的一個方面,也許表現在反嚴格決定論和對偶然性客觀意義的新認識。直到現在為止,一般人都相信“近似決定論”:只要近似知道一個系統的運行規律和初始條件就可以足夠好地計算出系統的近似行為。可是混沌學中著名的“蝴蝶效應”,即系統演化進程對初始條件的敏感依賴性,卻斷然否決了牛頓-拉普拉斯決定論的任何翻版(如“近似決定論”)的有效性。美國氣象學家洛侖茲在1961年發現,實際上長期天氣預報是不可能的。因為即使對于嚴格確定的氣象方程組,初始條件的小誤差,也會導致災難性的后果。諸如珞珈山的蝴蝶拍拍翅膀那樣的初始小擾動,經由地球大氣系統中的逐級放大,最終可能在南美洲引起大風暴。這種由決定論引出來的混沌,對經典觀念的打擊是毀滅性的。混沌革命加強并深化了量子革命。

通過量子力學、分子生物學、協同學乃至混沌學的研究,現代科學家越來越認識到,偶然性在自然界具有不容忽視的本體論地位,以及研究偶然性的內在機制的重要性。為恩格斯贊同過的黑格爾關于“必然性自己規定自己為偶然性,……偶然性又寧可說是絕對的必然性”(〔2〕,第562—563頁)的辯證論斷,得到最新自然科學的支持。正如馬克斯·玻恩在《關于因果與機遇的自然哲學》(1951)中所注意到的,量子世界是由因果與機遇聯合統治的,其中機遇是有規則的。同樣,在哈肯的協同學演化方程(如福克-普朗克方程和郎之萬方程)中,決定論力項與隨機力項是共同起作用的。在混沌理論中,混沌本是由決定論規律引出的內在的無序和不規則性,然而對混沌吸引子的相空間圖解研究卻表明,即使混沌也有精細結構,其中機遇也是有規則的,偶然性與必然性相互作用的深層非線性機制是可以認識的。從量子力學到系統科學的研究表明,概率統計定律是比嚴格決定論定律更好的認識工具,但原有的“大數定律”與“統計平均值”等概念對于描述偶然性已經顯得太粗糙了,非線性數學該出陣參戰了。因為唯有借助于非線性數學才可能認清偶然性起作用的深層結構機制。

當代自然哲學中的系統整體論思想也是相當有革命性的。自從歐幾里得、阿基米德以來,“整體=部分和”的公理已經成為背景知識不可缺少的一部分。這一觀念也是牛頓的機械論自然哲學的一個基本要素(它與實體主義、還原主義相協調)。然而,一般系統論中的貝塔朗菲原理“整體不等于各部分簡單相加的總和”,卻斷然取消了歐幾里得的公理,以整體論取代了機械論的還原主義。量子力學中的全域相關性和粒子物理學中的新奇現象(“基本”粒子分割到一定限度,將出現“部分大于整體”的佯謬)以及生態系統的整體關聯性(卡普拉《轉折點》,1989)都支持貝塔朗菲的系統整體觀。

總之,以現代物理學與系統科學為代表的當代科學革命已經引起了人類自然圖景的根本變革,人們有理由期待一種浸透著量子力學辯證法和系統科學辯證法精神的全新的自然哲學的出現。

現在我們轉入當代自然哲學的主要疑難及其可能解法的討論。

鑒于機械論自然哲學所遇到的困難,當代自然哲學所要討論的主要問題可以歸結如下:1.自然本體的性質問題。物理實在究竟是孤立的實體還是依賴于系統場境的存在?“潛在”是否也是物理實在的基本形態之一?究竟是否存在終極實在?2.物理實在所遵循的規律究竟是決定論還是非決定論的?自然系統究竟是必然性還是偶然性所支配的?偶然性應當具有怎么樣的本體論地位(是否應當有)?3.所謂“觀察者侵入物理事件”的實質是什么?主客二分的合理界限是什么?4.系統整體論與還原主義孰是孰非?5.目的論的新解釋問題。自然系統本身能有目的性嗎?能代替上帝作為選擇主體的地位嗎?目的論是否真與機械論勢不兩立?它又如何與神學劃清界線?下面我們將依次詳細分析這些問題:

1.自然本體或物理實在的性質問題。

牛頓機械論自然哲學的本體論或實在觀的要害就在于實體主義。一切物理實在被認為都有實體性、實存性,自然被等同于實體的集合(簡單相加的總和),一種在絕對空間構架中的機械性的存在物。然而,在新的原子科學中,從前認為不容置疑的“實體實存”原則已經失效。明確的電子“軌道”或光子“路徑”等經典性觀念在量子力學中是不允許的。電子實際上以“電子云”方式存在著,它并沒有絕對分明的輪廓,而且只是或然地顯現出來。如“測不準關系”所要求的,電子的位置與相應的動量具有天生的不確定性,決不可能同時有確定的值,因而人們決不可能同時測量到其確定的值。所有這些事實,如果從牛頓的經典本體論的眼光來看簡直是不可理解的,因為“潛在性”觀念完全沒有地位。

實際上,現代物理學家海森伯在批判牛頓機械論實在觀的基礎上,確實發展了一種全新的、更廣義的“潛在”實在觀。他根據量子力學事實總結出,潛在是介于可能與現實之間的物理實在的新型式,它被認為特別適用于微觀客體。海森伯尖銳地指出:“在量子論中顯示的實在概念的變化,并不是過去的簡單的繼續,而卻象是現代科學結構的真正破裂。”(〔3〕,第2頁)“幾率波的概念是牛頓以來理論物理學中全新的東西。……它是亞里士多德哲學中‘潛在’(potentia)這個老概念的定量表述。它引入了某種介乎實際的事件和事件的觀念之間的東西,這是正好介乎可能性和實在性之間的一種新奇的物理實在。”(〔3〕,第11頁)“事件并不一定是確定的,而是可能發生或傾向于發生的事情便構成了宇宙中的實在”。(〔4〕,第177頁)

總之,海森伯認為量子理論意味著實在觀念的革命,牛頓機械論的實在觀念已經失效。他舉例說,幾率波、量子態、電子軌道等都與統計期望值相關聯,表示傾向性的、潛在的物理實在,這是物理實在的新形式。

現代粒子物理學的新假說把潛在性觀念發展到海森伯本人始料所不及的程度。喬弗利·丘(Geoffrey Chew)著名的粒子靴絆學說[2],斷然否定了終極實體的可能性,揭示了自然本體的自助的、生成的本性。按照我的看法,它使系統實在論與系統辯證法完全本體論化了!由于任何粒子都可以充當基礎粒子,用以構成其他粒子,因此說穿了沒有任何一種粒子是真正的“基本粒子”,這就是所謂“基本粒子并不基本”。從根本上說,自然界不可能還原到任何一種或幾種終極的實體。說一個質子可以由中子和π介子所構成,或者說它是由Λ超子和K介子所構成,或者說它是由兩個核子和一個反核子所構成,甚至說是由場的連續質所構成。所有這一切可能性是同樣真實地存在的。應當說,所有這些陳述都同樣地正確又同樣地不完善。因為真實世界等于所有這些潛在的“可能世界”互相疊加的總和。借用日本物理學家武谷三男的話來說:“作為終極要素的實體——基本粒子本身也是相互流動地相互轉化的。這件革了以前的物質觀,顯示了辯證邏輯的正確性。”(〔5〕,第28頁)

我們的進一步的問題是:作為自然本體的物理實在究竟是否可以歸結為互相孤立的實體?還是從本質上說只能是依賴系統場境的整體全息相關的存在?在對著名的EPR假想[3]的實驗檢驗中所表現出來的量子關聯(即遠距粒子之間的整體相關性)很好地回答了這一問題。正如美國科學哲學家西莫尼(A.Shimony)所指出:“我們生活在一個實驗結果正在開始闡明哲學問題的非凡時代”。而今最新實驗結果表明,兩個相隔幾米且又沒有彼此傳遞信息機制的實體可能被相互糾結在一起,即它們的行為可以有極顯著的相關性,以致對其中一個實體進行測量將瞬時地影響到另一個實體的測量結果。這個新奇的實驗結果斷然否定了愛因斯坦等人(EPR)的預設(即“空間上遠隔的客體的實在狀態必定是彼此獨立的”),卻符合量子力學的系統整體觀。正如玻爾所注意到的,量子現象是作為整體而存在的,其中所反映出來的內在關聯是不可消解的。量子現象的整體性不允許人們對它作機械的切割并把這種切割物認作它自身。因此我們有理由說,量子力學的整體實在觀是與系統整體觀相通的,量子辯證法與系統辯證法相互滲透,量子革命與系統科學革命相互支持。因此,作為科學革命的結晶,新自然哲學主張,物理實在的部分性質取決于整體,取決于系統的內在關聯,從根本上說,自然本體是整體全息相關的存在。

2.決定論與非決定論疑難,偶然性的本體論地位問題。

從前認為不容置疑的機械論自然哲學的“嚴格決定論”預設,如今在新的原子科學中也已經失效。人們向來認為,自然科學和“自然科學唯物主義”有一個不可動搖的支柱:這就是嚴格決定論。對自然科學的這種見解,最典型地表現在拉普拉斯杜撰的那個精靈故事中,據說這個精靈(超智慧者)知道世界現況的一切決定因素,因而能夠無歧義地得出世界在過去或未來的其他一切狀態。這個被后人稱作“拉普拉斯妖”的理想實驗正是嚴格決定論的化身。可是,現在在微觀領域里發現了與這種嚴格決定論原則相違背的種種反常事實。簡略地說,熱學與分子物理學的研究表明,氣體分子運動是包含不確定性的自然進程,由于初始條件捉摸不定,單個分子的運動狀態成為純粹的偶然事件。分子運動論乃至統計力學的建立表明,概率統計定律也是自然描述不可缺少的一種基本形式。

強調概率統計定律重要性的科學思想反映到自然哲學中去,就成為“統計決定論”。其要旨可概括如下:對于一些包含不確定性的自然過程,雖然嚴格決定論不能直接應用,但若應用統計方法研究大量單個偶然事件的平均行為,卻可以找出明顯的統計規律性。換句話說,這些自然過程在統計平均意義上仍是決定論性的。這是決定論的弱化形式之一。

統計決定論的科學基礎在于經典統計力學。統計力學的基本出發點則在于,認為盡管大量分子的集團行為滿足統計規律,但從底層基礎而言,單個分子(單個過程)仍遵守牛頓定律,滿足嚴格決定論。這樣,統計決定論并不把不確定性歸因于基礎規律的不同,而是把它歸因于初始條件的難以捉摸(即人類知識的不完備性)。因此,統計決定論只是嚴格決定論的補充形式。

然而,將概率統計觀點真正貫徹到底,最終導致量子物理學的興起,而測不準關系的發現則使嚴格決定論淪為無意義的空想。

在現代科學家中第一個對“非完全決定論”(即under-determinism,這個詞的不恰當的替代詞是indeterminism,即非決定論)有十分清醒認識的是哥廷根學派的馬克斯·玻恩。他在名著《關于因果和機遇的自然哲學》中對非完全決定論作了比其他量子物理學家(如玻爾、海森伯等)更為系統和透徹的分析。通過對玻恩文本的適當解釋、調整與轉譯,我們可以提煉出對當代自然哲學極有價值的內容和決定論/非決定論問題的辯證解。〔7〕

非完全決定論的最主要或最有特色的一種表現形式,是與量子力學相應的概率決定論。其要點如下:(1)單個(量子)過程內在地是幾率性的、非決定性質的;(2)“自然界同時受到因果律和機遇律的某種混合方式的支配。”(〔8〕,第9頁)(3)機遇律是自然律的終極形式,偶然性有規則,“它們是用數學上的概率論表述出來的。”(〔8〕,第7頁)

關于自然界究竟是由必然性還是偶然性所支配的,是決定論性還是非決定論性的那個爭論,波普有一個著名的比喻:“云和鐘”。“云”就是天上的云,代表極端不確定性,它非常不規則、毫無秩序又有點難以預測;“鐘”就是家家都有的時鐘,代表高度的確定性,它非常有規則、有秩序又是高度可預測的。這是兩個不同的極端,一端變化莫測,另一端高度精確。一般的自然事物往往處在這兩個極端之間。波普用“所有的云都是鐘”(當然也可以說“所有自然事物都是鐘”)表示決定論,用“所有的鐘都是云”(當然也可以說“所有自然事物都是云”)表示非決定論。波普終于認識到,人類理性需要的是“處于完全的偶然性和完全的決定論之間的某種中間物,即處于完全的云和完善的鐘之間的某種中間物。”(〔6〕,第239—240頁)這種完全的偶然論(非決定論)和完全的決定論的中間物,我們可以恰當地稱作“非完全決定論”,它意味著對偶然性與必然性、因果與機遇的某種辯證綜合,這就是當代自然哲學對這一爭論所作的正確解。以上我們是借用M.玻恩與波普的話,經校正、轉譯納入自己的概念框架,并用以闡發自己的“非完全決定論”觀點。〔7〕

現代生物學和生物微觀控制論也為非完全決定論提供新的佐證。莫諾在其名著《偶然性與必然性(略論現代生物學的自然哲學)》中,從分子生物學的材料出發,有力地抨擊了嚴格決定論,并為恢復偶然性在自然哲學中的本體論地位付出極大的努力。莫諾是這樣說的:

當偶然事件——因為它總是獨一無二的,所以本質上是無法預測的——一旦摻入了DNA的結構之中,就會被機械而忠實地進行復制和轉錄,……從純粹偶然性的范圍中被延伸出來以后,偶然性事件也就進入了必然性的范圍,進入了相互排斥、不可調和的確定性的范圍了。因為自然選擇就是在宏觀水平上、在生物體的水平上起作用的。自然選擇能夠獨自從一個噪聲源泉中譜寫出生物界的全部樂曲。(著重號為引者所加)(〔9〕,第88頁)

莫諾這段話應當看作關于生物自然界的非完全決定論,關于極小幾率的偶然事件向極嚴格規律轉化過程的生動說明。特別是最后那句話是說明生物界的偶然性與必然性的相互聯系、相互作用方式的絕妙比喻。當然,由于莫諾有時十分不恰當地將嚴格決定論與辯證唯物論混為一談,應當注意他的言論本身具有兩重性。(〔10〕,第324頁)

非完全決定論的內容還由于系統科學的興起而得到了進一步豐富和加強。有人因之稱作系統決定論。其要旨可概括如下:

一般的自然界的復雜系統(在自然哲學中姑且撇開社會系統),不能由它的構成要素和子系統通過簡單相加和線性因果鏈無歧義地決定其整體功能和行為。但系統的存在與演化仍有相當確定的規律可循,機遇與因果共同決定著系統的存在和發展,因而系統在整體上仍有決定性。

具體地說,系統演化的主要機理就在于機遇性漲落、反饋和非線性作用。人們常喜歡將借助于系統科學特有的資料所認識的辯證法,稱作“系統辯證法”。系統科學從自己的角度闡明了因果與機遇、決定性與隨機性的辯證法:自組織系統作為遠離平衡態的開放系統,以偶然的隨機的漲落為誘導,通過正反饋和非線性放大,某一漲落在矛盾競爭之中取得支配地位,成為序參量,于是使系統的演化納入必然的軌道,建立時空、功能上的新的有序狀態。系統辯證法與矛盾辯證法在自組織動力學機制的解釋上是高度一致的:當自組織系統處于不穩定點時,系統內部矛盾全面展開并有所激化,與各種子系統及其要素的局部耦合關系和運動特性相聯系的模式和參量都異常活躍,各種參量的漲落此起彼伏,它們都蘊含著一定的結構與組織的胚芽,為了建立自己的獨立模式并爭奪對全局的支配權,它們之間進行激烈的競爭與對抗,時而“又聯合又斗爭”,最后才選拔出作為主導模式的序參量。非完全決定論在協同學的描述系統演化的數學方程中也得到反映。如郎之萬方程(描述布朗運動的)和福克-普朗克方程中,概率論描述與因果性描述共處于一體,隨機作用項與決定論作用項被綜合在一起,偶然性與必然性因子被綜合在一起。從自然哲學看,它們體現了機遇律與因果律的辯證綜合。

3.物理事件與觀察的關系、主體-客體相互作用問題。

從前認為不容置疑的“客觀事件與任何觀測無關”的自然哲學信條,如今在新的原子科學中同樣也正在失效。正如海森伯所指出,經典物理學的真正核心,也就是物理事件在時間、空間上的客觀進程與任何觀測無關的信念,由于許多量子實驗的發現而受到沖擊。而現代物理學的真正力量就存在于自然界為我們提供的那些新的思想方法之中。因此,再指望用新實驗去發現與觀測無關的“純客觀事件”或不依賴于觀察者和相關參照系的“絕對時間”,就無異于指望極地探險家在南極圈尚未勘查過的地方會發現“世界盡頭”,那只能是不切實際的幻想。(〔4〕,第4頁和第9頁)對原子、電子那樣的客體的任何一次射線照射或觀測都足以破壞其初始狀態,而且由于或然性和不可逆性,這種狀態不可恢復。

玻爾為量子力學所作的“互補性詮釋”中一個最基本的思想是:觀察者(主體)與被觀察者(客體)之間的嚴格劃界是不可能的,因為在實際過程中兩者處在緊密相連的相互作用之中。無論是純粹的“主體”即可以)“無干擾”地進行觀察的觀察者)或是純粹的“客體”(可以絕對隔絕外界作用而界定被觀察系統的孤立狀態)概念都只是經典物理學所作的理想化,而這兩種理想化既是相互補充又是相互排斥的。〔11〕這就是玻爾著名的“我們既是觀眾(觀察者),又是演員(被觀察者)”辯證論斷的真實含義。

實際上,從當代自然哲學的眼光看,這是很自然的:人(觀察者)本來就是自然(被觀察者)不可分割的一部分,我們只能用一種內在化的眼光來看待自然,而不可能象上帝那樣用完全超脫的外在化眼光看自然,這就是問題的癥結所在。

正如羅森菲爾德所指出,所謂“觀察者介入原子事件進程”的局勢,容易產生科學事實的客觀性被敗壞的假象,因此我們必須與機械論和不可救藥的唯心主義劃清界線。羅森菲爾德本人正是以辯證法為武器在與機械論和唯心主義劃界的過程中闡明了觀察者與物理事件的辯證關系的客觀性質。(〔12〕,第140頁)海森伯說得很分明:“量子論并不包含真正的主觀特征,它并不引進物理學家的精神作為原子事件的一部分”。(〔3〕,第22頁)可見,“客體行為與觀測有關”原則并不意味著我們可以拋棄客觀實在而接受主觀主義。

4.系統整體實在觀問題。在闡述以上各個問題的過程中,我們實際上已經闡明了整體實在觀的基本觀點:“整體不同于各部分機械相加的總和”。自然本體是依賴于系統場境的存在、處在相對相關中的存在,是整體全息相關的實在。正如D.玻姆所指出的,按照量子概念,世界是作為統一的不可分割的整體而存在的,其中即使是每個部分內在的性質(波或粒子)也在一定程度上依賴于場境。其實,人本身就是自然的產物,自然不可分割的一部分,人只能作為參與者并在相互作用過程中用內在化的觀點來理解自然本體。只是在系統及其諸要素之間的相互作用可以忽視的情況下,還原主義才是近似地有效的。

5.自然本體目的性的(自組織解釋)問題。簡單地說,當代自然哲學的目的論觀是亞里士多德內在目的論的復活和發展,是現代系統科學目的論觀的升華。宇宙象是一個有機統一的整體,自然系統(包括生命系統和非生命自組織系統)的結構、功能和演化過程的合目的性可以通過自然本身的自組織機制的作用得到合理解釋。〔1〕

例如,自然選擇的實質問題是由生物哲學所提出的一個重要問題。按照生物控制論的初步解答,關于生物進化的自然選擇機制實質上就是一種以偶然的突變為素材,通過反饋調節的最優化控制機制。艾根的超循環理論則進一步明確,在大分子的自組織階段,在生化反應的超循環中選擇價值高的突變不斷通過過濾和正反饋放大,形成功能性的組織,強化、優化并向更高水平進化。這里,一方面自然選擇表現為自然本身的純物質性的有規則的相互作用過程,但它不同于牛頓的機械因果性模式,因為其中突變與選擇機制、機遇與因果是辯證地聯合起作用的;另一方面,盡管它排除了自然神力的干預,卻仍然是合目的性的過程,因為它有自引導的、自動調節的功能(使物種或分子擬種適應環境)。這樣,按系統辯證法重新解釋過的合理的目的論又能與神學劃清界線。

正如我們已經看到的,20世紀早期的相對論量子論革命向統治思想界長達二三百年之久的機械論自然哲學,提出了全面的詰難和挑戰,并給予毀滅性的打擊。當代自然哲學正是在克服舊自然哲學的危機,在回答新興自然科學所提出的詰難和挑戰的過程中逐步建立起來的。20世紀中葉以來以系統科學群為代表的新興科學的迅速發展,豐富了當代自然哲學的內涵,加速了人類自然圖景革新的步伐。

總起來說,當代自然哲學的核心觀點,可以簡要地重新概括如下:

1.自然本體是依賴于系統場境的、在關系中生成的、流動的實在,作為孤立實體的終極實在根本不存在,“潛在”是物理實在的一種新形式;2.自然系統遵循非完全決定論(即決定論與非決定論的中間物),它是由因果與機遇聯合統治的,此兩者互斥又互補。偶然性的本體論地位是:它是自然本體本質中的一個規定、一個方面和一個要素。偶然性存在精細的非線性作用機制(由混沌革命所發現!)。3.物理事件與觀測有關,人作為自然系統的一分子只能用參與者的身分和內在化的觀點來觀察自然,絕對的主客二分只是不切實際的幻想;4.系統整體觀在總體上比還原主義更為合理,不過為了進行精細的研究,有節制的還原主義仍是必不可少的和有啟發力的,兩者其實是互斥又互補的。5.自然系統的合目的性可以按自組織觀點得到最合理的解釋,目的論與機械論也是互斥又互補的。

最后,我們所要強調的是偶然性的恰當的本體論地位問題。迄今仍有不少讀者受過時的哲學教科書的影響,把偶然性當作一種外在的、主觀的、局部的、非本質的和不穩定的或暫時的東西。其實這種看法有違辯證法的本意,可以毫不客氣地說它屬于機械論的范疇。通過對量子辯證法與系統辯證法的研究,我們可以十分有把握地說:機遇或偶然性在本體論中恰恰是一種內在的、固有的、普遍的、本質的和永久性的成分。借用列寧論“假象”的話來說,偶然性是“本質的一個規定、一個方面和一個環節”,是“本質自身在自身中的表現”。機遇與偶然性是客觀的并且具有自己的非常獨特的規律。在新自然哲學中,我們不能再滿足于把偶然性看作必然性的“補充形式”的外在化理解,而要比以往任何時候都更加清醒地認識到,機遇與因果相互聯結、相互滲透,辯證地融為一體。在非完全決定論中,偶然性恢復了它本來應有的本體論地位,機遇與因果,偶然性與必然性以幾率或統計性乃至“混沌吸引子”為中介辯證地聯結在一起。在相空間中混沌吸引子的精巧的無窮嵌套的自相似結構,精確而形象地展示出系統演化過程中機遇與因果如何聯合起作用的深層非線性機制,進一步豐富了對自然本體辯證內涵的認識。

應當說,這是量子辯證法與系統辯證法對矛盾辯證法的一項貢獻,它們本應是相得益彰的。

參考文獻

〔1〕桂起權:《目的論自然哲學之復活》,載“自然辯證法研究”1995(7),并收入吳國盛主編《自然哲學》一書,中國社科出版社1994年版。

〔2〕《馬克思恩格斯全集》第20卷。

〔3〕海森伯:《物理學與哲學》商務印書館1984年版。

〔4〕海森伯:《嚴密自然科學基礎近年來的變化》上海譯文出版社1978年版。

〔5〕《武谷三男物理學方法論論文集》商務印書館1975年版。

〔6〕波普:《客觀知識》,上海譯文出版社1987年版。

〔7〕桂起權:《非完全決定論:因果與機遇的辯證綜合》,載“科學技術與辯證法”1991(2)。

〔8〕玻恩:《關于因果和機遇的自然哲學》商務印書館1964年版。

〔9〕莫諾:《偶然性與必然性(略論現代生物學的自然哲學)》,上海人民出版社1977年版。

〔10〕桂起權:《科學思想的源流》武漢大學出版社1994年版。

〔11〕桂來權《析量子力學中的辯證法思想—玻爾互補性構架之真諦》,載“哲學研究”1994(10)。

〔12〕羅森菲爾德:《量子革命》商務印書館1991年版。

注釋:

[1]正是在這一意義上,梁實秋在《遠東英漢大辭典》中,將控制論(cybernetics)譯作神經機械學。

第5篇:量子力學最新研究范文

在知識經濟越來越占據主導地位的今天,培養學生的創新精神和實踐能力,已經成為教師義不容辭的責任。物理學作為培養學生智力的重要載體,對培養學生的創新發展能力有著關鍵的價值和意義。下面結合原子物理教學實踐,對如何培養和發展學生能力進行簡要的分析。

一、挖掘學科內涵,激發學生的學習動力

教學過程中學生占有絕對的主體地位和作用。原子物理學是研究原子、分子等微觀物體的運動規律和相互作用等問題的一門物理學分支,從其產生背景、研究方向、研究對象等方面相比物理學其他基礎學科,都是比較特殊的,教師應該在本門課程教學之初就把這些特殊之處向學生加以重點闡述,可以起到激發學生學習興趣的作用。

1.追根溯源,通過原子物理學的發展歷史,調動學生的學習熱情。兩千多年前原子被發現,其概念的產生是用以表示化學變化中最小的單元。在20世紀初,原子物理學成為一門新興學科。隨著近代物理學的發展,原子物理學到20世紀二三十年代以后逐步系統、完善起來。其中諸多的內容像微波波譜理論、量子力學理論等還是20世紀四十年代左右才建立的,有些內容甚至是20世紀后葉科學研究的成果。它有著不同于其他學科新穎、豐富、與眾不同的內容。在教學過程中,要著力使學生明確這一特點,不但能夠調動他們的學習熱情,增強其對微觀領域探索的欲望,更能促使他們較好地發揮學習的主動性。

2.深入其中,通過原子物理學如今的發展范疇,調動學生的學習熱情。原子物理從發展過程上來劃分,應屬于近代物理學的范疇。不過,因為其規律和基本公式是在大量物理實驗的基礎上并根據經典物理理論推導出來的,因此它又與普通物理有著“合集”的內容。由此,原子物理客觀上成了聯系經典物理與近代物理的一門“中間”學科,可形象地比喻為“溝通近代物理與經典物理間的紐帶”。因原子物理處在過渡地位,決定了其理論體系結構沒有模式固定的理論和研究方法。清晰準確地向學生傳達這一信息,一方面可使他們從思想上加以重視,另一方面能減少其學習上的“盲目性”,為以后的深入學習打下堅實的基礎,同時還能更好地調動學生學習的積極性。

3.遠景展望,通過原子物理學發展的未來,調動學生的學習熱情。由于歷史上的原因,經典的原子理論自現代量子力學出現以后被不客觀地否定了,也由于經典的原子理論自玻爾以后再也沒有一個創造性的思想和研究出現過,使那些深藏于復雜事物背后的簡單真實沒有被客觀地揭示出來。因此在這一領域,經典的電磁理論和牛頓力學,無法以它客觀上的準確和嚴謹的表達方式向人們展示它的作用。在授課過程中,我們要有意識地教育學生,既尊重歷史也尊重權威,但這不等同于排斥權威以外的正確思想,否則科學發展也就失去了它的創造性和生命力。

二、調整教學內容,提高學生的學習能力

教學內容是實現教育目標的本源,而它主要又表現在教材上。通過教師的充分理解和深刻把握,將教材內容現代化是提高學生能力的有效方式。我們目前“原子物理學”教材的種類和版本相對較少,特別是能適應我們普通學校特點和實驗條件的更是少之又少。由此,我們應該在使用通用教材時,依據學校現有條件、教學目的等情況,適當地以部分教材內容加以調整以提高學生學習的針對性。

1.對教學內容適當刪減。如正確把握玻爾理論的講解。玻爾理論一度成為原子物理學的核心部分,但在教學過程中筆者發現,如果過多地強調這一理論,則可能會使本來較為直觀反映近代物理學理論體系和最新科學成果的原子物理課苑囿于玻爾理論范疇。另外隨著近代科學的不斷進步,玻爾理論中的一些結論和觀點已不能完全解釋原子體系中一些較為復雜的現象,特別是隨著新的量子理論的出現,它取代了玻爾理論,能夠更為科學地描述微觀客體運動規律,因此,對屬于玻爾理論部分的內容,理應進行適當的刪繁就簡。同時,也應看到玻爾理論在定性處理一些相對復雜的問題時,它具有直觀形象和物理圖像比較清晰的特點,而量子力學又不可能取而代之,所以,對這一部分內容的壓縮又要適可而止。

2.對教材內容適當擴充。在對玻爾理論等內容進行精簡、壓縮的同時,我們要注意在不超出教學大綱規定的范圍內,對粒子物理、原子核物理,甚至量子色動力學等部分內容進行相應地擴充。(1)適當充實核物理部分內容,如原子核的結構和變化規律及放射衰變理論等問題。(2)當今對原子物理教材結構的要求是以量子力學觀點貫穿于對原子結構、性質等問題的研究,所以,對屬于基本觀點方面的內容,應進行必要的補充,如量子力學的幾個基本假設等問題,使學生能從更好的角度來理解問題。

3.結合典型問題,適當介紹物理學史內容。從物理學的發展史上可以看出,任何一個物理學概念的提出,都是人們從紛繁復雜的表象中,找到事物的主要矛盾,經過反復分析、不斷實驗才可能取得的。因此,我們在教學過程中,要有目的地使學生了解一些原子物理學史的內容。通過幫助學生了解原子物理學的發展史,從而了解物理概念,學到科學方法,擴大知識面。

三、發揮教師引導作用,培養學生的創新能力

轉貼于

在教學活動中,能否使學生的創新能力得到較大的發展是衡量教學效果的重要指標。學生創新能力的提高與發展,固然與學生個人素質、思維習慣及其他方方面面的因素有關,但教師在其中的引導作用同樣也是不可或缺的。原子物理教學活動由于條件所限主要是在課堂上進行,所以如何在課堂教學中加強對學生創新能力的培養就更顯得尤為重要。

第6篇:量子力學最新研究范文

1.1量子計算機量子計算機可簡單理解為遵循量子力學能夠進行高速運算、存儲和處理信息的計算機,它是在社會對高速度、保密好、容量大的通訊及計算提出較高要求的情況下產生的。物理主體主要包括:液態核磁共振量子計算機、(固態)硅晶體核磁共振量子計算機、離子陷阱、量子光學、腔室量子電動力學、超導體方案等。量子計算機的功能在于進行大數的因式分解,和Grover搜索破譯密碼,但是同時也提供了另一種保密通訊的方式,此外還可以用來做量子系統的模擬。但是在昨晚高難度運算后,能耗高、壽命短,散熱量大等缺點則暴露出來,真正有價值的量子計算機還有待繼續研究。

1.2光子計算機光子計算機進行數字運算、邏輯操作、信息存貯等內容利用的是光信號,以光運算代替電運算,主要由激光器、光學反射鏡、透鏡、濾波器等光學元件設備組成。它具有運算、處理能力極強的優點,同時,兼具容錯性,能夠進行模糊處理,但并不影響運算結果,智能化更高端。它主要具有以下好處:光子不帶電荷,不產生磁場,也不受磁場作用影響;光子也不具有靜止質量,可以在真空和介質兩種狀態下傳播;信息存儲容量大,通道寬,通信能力強;能量耗用低,散熱量小,節能環保性較強,也避免了計算機運行時內部過熱的情況。目前雖然光子計算機在功能和運算速度方面和電子計算機有一定差距,但光子計算機的進一步研制、完善,在對圖像處理、目標識別和人工智能等方面發揮重大作用。

1.3生物計算機生物計算機也叫做放生計算機,是以仿生學研究為基礎而形成的新型計算機技術,它以生物工程技術生產的蛋白分子制成生物芯片作為基礎元件。它具有并行處理的功能,運行速度比普通的電子計算機要快10萬倍,存儲空間占用更是少之又少。它具有的優點很多,首先,體積小、功效高,比集成電路小很多,可以隱藏在地板、墻壁等地方;其次,具有自我修復功能,它的內部芯片出現故障時,不需要人工修理,能自我修復,永久性、可靠新高;再者,能耗很低,能量消耗僅占普通電子計算機的10億分之1,散熱量很小;第四,不受電路間信號干擾。目前,這種計算機還在研制階段,存在技術不成熟、信息提取難等問題,還需要繼續優化。

1.4納米計算機納米計算機研制是計算機發展過程中的一場革命,它以納米技術為基礎研制出計算機內存芯片,其體積相當于發絲直徑的千分之一,生產成本非常低,不需要建造超潔凈生產車間,也不需要昂貴的實驗設備和人數眾多的生產團隊,同時,納米計算機也需要耗費能源可以忽略不計,但是對其強大其性能的發揮絲毫不產生影響。納米計算機可以應用到微型機器人,以至于日用電子設備,甚至玩具中,都能獲得強大的微處理功能,其應用范圍也涉及到現代物理學、化學、電子學、建筑學、材料學等各個學科領域。這項新的課題技術也在不斷的完善和發展,將為計算機發展帶來新的內容。

2云技術和網絡技術發展

2.1云技術云計算是分布式計算的一種形式,它通過將計算拆散計算再進行組合回傳的方式進行,可以達到和超級計算機同樣強大的網絡服務,這是云技術的根本。云技術不僅僅作為資料搜集手段,它是集網絡技術、信息技術、整合技術管理平臺技術、應用技術為一體的綜合資源池,靈活便捷。云技術作為一種商業模式的體現方式,其應用非常廣泛,目前,已經在搜索引擎、網絡信箱等領域投入使用,未來在手機、GPS等行動裝置上也可實現。云技術正以它的可靠、實用、安全等性能逐漸被人們所接受,云物聯、云存儲、云呼叫、私有云、云游戲、云教育、云會議以及云社交等正逐步強化它的服務功能。

2.2網絡技術網絡技術發展有賴于光纖技術的快速發展。光導纖維技術在通信、電子和電力等領域日益擴展,成為大有前途的新型基礎材料,與之相伴的光纖技術也以新奇、便捷贏得人們的青睞。它具有耐濕、耐輻射、易于安裝和保養、24小時的連續工作等性能被廣泛應用。尤其在塑料光纖產生后,海底光纜工程得以順利實施,對世界范圍網絡通信起到良好的推動作用。

3移動計算機技術發展

目前最熱門的是wifi無線技術,而最新的是4G通信技術,這兩項技術對移動計算機的發展起到了關鍵的支撐作用。4G網絡時代剛剛開啟,目前開始應用于移動設備上,但是在微型便攜計算機上的應用尚未起步。如何將移動計算機等終端產品通過芯片等形式與4G網絡完沒相連接,如發展移動電視、移動電腦、成為一項熱門話題,有待進一步研究探索。

4結束語

第7篇:量子力學最新研究范文

蒸蒸日上的凝聚態物理學

自從80年代中期發現了所謂高臨界溫度超導體以來,世界上對這種應用潛力很大的新材料的研究熱情和樂觀情緒此起彼伏,時斷時續。這種新材料能在液氮溫區下傳導電流而沒有阻抗。高臨界溫度超導材料的研究仍是今后凝聚態物理學中活躍的領域之一。目前,許多國家的科學工作者仍在爭分奪秒,繼續進行競爭,向更高溫區,甚至室溫溫區超導材料的研究和應用努力。可以預計,這個勢頭今后也不會減弱,此外,高臨界溫度的超導材料的機械性能、韌性強度和加工成材工藝也需進一步提高和解決。科學家們預測,21世紀初,這些技術問題可以得到解決并將有廣泛的應用前景,有可能會引起一場新的工業革命。超導電機、超導磁懸浮列車、超導船、超導計算機等將會面向市場,屆時,世界超導材料市場可望達到2000億美元。

由不同材料的薄膜交替組成的超晶格材料可望成為新一代的微電子、光電子材料。超晶格材料誕生于20世紀70年代末,在短短不到30年的時間內,已逐步揭示出其微觀機制和物理圖像。目前已利用半導體超晶格材料研制成許多新器件,它可以在原子尺度上對半導體的組分摻雜進行人工“設計”,從而可以研究一般半導體中根本不存在的物理現象,并將固態電子器件的應用推向一個新階段。但目前對于其他類型的超晶格材料的制備尚需做進一步的努力。一些科學家預測,下一代的電子器件可能會被微結構器件替代,從而可能會帶來一場電子工業的革命。微結構物理的研究還有許多新的物理現象有待于揭示。21世紀可能會碩果累累,它的前景不可低估。

近年來,兩種與磁阻有關的引起人們強烈興趣的現象就是所謂的巨磁阻和超巨磁阻現象。一般磁阻是物質的電阻率在磁場中會發生輕微的變化,而巨磁和超巨磁可以是幾倍或數千倍的變化。超巨磁現象中令人吃驚的是,在很強的磁場中某些絕緣體會突變為導體,這種原因尚不清楚,就像高臨界溫度超導材料超導性的原因難以捉摸一樣。目前,巨磁和超巨磁實現應用的主要障礙是強磁場和低溫的要求,預計下世紀初在這方面會有很大的進展,并會有誘人的應用前景。

可以預計,新材料的發展是21世紀凝聚態物理學研究重要的發展方向之一。新材料的發展趨勢是:復合化、功能特殊化、性能極限化和結構微觀化。如,成分密度和功能不均勻的梯度材料;可隨空間時間條件而變化的智能材料;變形速度快的壓電材料以及精細陶瓷材料等都將成為下世紀重要的新材料。材料專家預計,21世紀新材料品種可能突破100萬種。

等離子體物理與核聚變

海水中含有大量的氫和它的同位素氘和氚。氘既重氫,氧化氘就是重水,每一噸海水中含有140克重水。如果我們將地球海水中所有的氘核能都釋放出來,那么它所產生的能量足以提供人類使用數百億年。但氘和氚的原子核在高溫下才能聚合起來釋放能量,這個過程稱為熱核反應,也叫核聚變。

核聚變反應的溫度大約需要幾億度,在這樣高的溫度上,氘氚混合燃料形成高溫等離子體態,所以等離子體物理是核聚變反應的理論基礎。1986年美國普林斯頓的核聚變研究取得了令人鼓舞的成績,他們在TFTR實驗裝置上進行的超起動放電達到20千電子伏,遠遠超過了“點火”要求。1991年11月在英國卡拉姆的JET實驗裝置上首次成功地進行了氘氚等離子體聚變試驗。在圓形圈內,2億度的溫度下,氘氚氣體相遇爆炸成功,產生了200千瓦的能量,雖然只維持了1.3秒,但這為人類探索新能源——核聚變能的實現邁進了一大步。這是90年代核能研究最有突破性的工作。但目前核聚變反應距實際應用還有相當大的距離,技術上尚有許多難題需要解決,如怎樣將等離子加熱到如此高的溫度?高溫等離子體不能與盛裝它的容器壁相接觸,否則等離子體要降溫,容器也會被燒環,這就是如何約束問題。21世紀初有可能在該領域的研究工作中有所突破。

納米技術向我們走來

所謂納米技術就是在10[-9]米(即十億分之一米)水平上,研究應用原子和分子現象及其結構信息的技術。納米技術的發展使人們有可能在原子分子量級上對物質進行加工,制造出各種東西,使人類開始進入一個可以在納米尺度范圍,人為設計、加工和制造新材料、新器件的時代。粗略的分,納米技術可分為納米物理、納米化學、納米生物、納米電子、納米材料、納米機械和加工等幾方面。

納米材料具有常規材料所不具備的反常特性,如它的硬度、強度,韌性和導電性等都非常高,被譽為“21世紀最有前途的材料”。美國一研究機構認為:任何經營材料的企業,如果現在還不采取措施研究納米材料的開發,今后勢必會處于競爭的劣勢。

納米電子是納米技術與電子學的交叉形成的一門新技術。它是以研究納米級芯片、器件、超高密度信息存儲為主要內容的一門新技術。例如,目前超高密度信息存儲的最高存儲密度為10[12]畢特/平方厘米,其信息儲存量為常規光盤的10[6]倍。

納米機械和加工,也稱為分子機器,它可以不用部件制造幾乎無任何縫隙的物體,它每秒能完成幾十億次操作,可以做人類想做的任何事情,可以制造出人類想得到的任何產品。目前采用分子機器加工已研制出世界上最小的(米粒大小)蒸汽機、微型汽車、微型發電機、微型馬達、微型機器人和微型手術刀。微型機器人可進入血管清理血管壁上的沉積脂肪,殺死癌細胞,修復損壞的組織和基因。微型手術刀只有一根頭發絲的百分之一大小,可以不用開胸破腹就能完成手術。21世紀的生物分子機器將會出現可放在人腦中的納米計算機,實現人機對話,并且有自身復制的能力。人類還有可能制造出新的智能生命和實現物種再構。

“無限大”和“無限小”系統物理學

“無限大”和“無限小”系統物理學是當今物理學發展的一個非常活躍的領域。天體物理和宇宙物理學就屬于“無限大”系統物理學的范疇,它從早期對太陽系的研究,逐步發展到銀河系,直到對整個宇宙的研究。熱大爆炸宇宙模型作為本世紀后半葉自然科學中四大成就之一是當之無愧的。利用該模型已經成功地解釋宇宙觀測的最新結果。如宇宙膨脹,宇宙年齡下限,宇宙物質的層次結構,宇宙在大尺度范圍是各向同性等重要結果。可以說具有暴脹機制的熱大爆炸宇宙模型已為現代宇宙學奠定了一定的基礎。但是到目前為止,關于宇宙的起源問題仍沒有得到解決,暴脹宇宙論也并非十全十美,事實上想一次就能得到一個十分完善的宇宙理論是很困難的,這還有待于進一步的努力和探索。

“無限大”系統物理學還有兩個比較重要的問題是“類星體”和“暗物質”。“類星體”是1961年發現的,一個類星體發出的光相當于幾千個星云,而每個星云相當于1萬億個太陽所發出的光,所以對類星體的研究具有十分重大的意義。60年代末,科學家們發現一個編號為3C271的類星體,一天之內它的能量增加了一倍,到底是什么原因使它的能量增加如此迅速?有待于21世紀去解決。“暗物質”是一種具有引力,看不見,什么光也不發射的物質。宇宙中百分之九十以上的物質是所謂的“暗物質”,這種“暗物質”到底是什么?我們至今仍不清楚,也有待于下世紀去解決。

原子核物理和粒子物理學則屬于“無限小”系統物理學的范疇,它從早期對原子和原子核的研究,逐步發展到對粒子的研究。粒子主要包括強子(中子、質子、超子、л介子、K介子等)、輕子(電子、μ子、τ輕子等)和媒介子(光子、膠子等)。強子是對參與強相互作用粒子的總稱,其數量幾乎占粒子種類的絕大部分;輕子是參與弱相互作用和電磁相互作用的,它們不參與強相互作用;而媒介子是傳遞相互作用的。目前,人們已經知道參與強相互作用的粒子都是由更小的粒子“夸克”組成的,但是至今不能把單個“夸克”分離出來,也沒有觀察到它們可以自由地存在。為什么“夸克”獨立不出來呢?還有一個不能解釋的問題是“非對稱性”,目前我們已有的定理都是對稱的,可是世界是非對稱的,這是一個有待于解決的矛盾。尋找獨立的夸克和電弱統一理論預言的、導致對稱性自發破缺的H粒子、解釋“對稱”與“非對性”的矛盾,是21世紀粒子物理學研究的前沿課題之一。

從表面上看“無限大”系統物理學與“無限小”系統物理學似無必然的聯系。其實不然,宇宙和天體物理學家利用廣義相對論來描述引力和宇宙的“無限大”結構,即可觀察的宇宙范圍;而粒子物理學家則利用量子力學來處理一些“無限小”微觀區域的現象。其實宇宙系統與原子系統在某些方面有著驚人的相似性。預計21世紀“無限大”系統物理學將會與“無限小”系統物理學結合得更加緊密,即宏觀宇宙物理學和微觀粒子物理學整體聯系起來。熱大爆炸宇宙模型就是這種結合的典范,實際上該模型是在粒子物理學中弱電統一理論的基礎上建立起來的。可以預計,這種結合對科技發展和應用都會產生巨大的影響。

二、跨世紀科學技術的發展趨勢

科學技術能否取得重大突破的關鍵取決于基礎科學的發展。所以,首先必須重視基礎科學的研究,不能忽視更不能簡單地以當時基礎科學成果是否有用來衡量其價值。相對論和量子力學建立時好像與其他學科和日常生活無關,直到20世紀中期相對論和量子力學在許多科學領域中引起深刻的變革才引起人們的足夠重視。可以說,20世紀幾乎所有的重大科技突破,像原子能、半導體、激光、計算機等,都是因為有了相對論和量子力學才得以實現。可以說,沒有基礎科學就沒有科學技術、社會和人類的發展。

20世紀重大科技成果的成功經驗證明,不同學科間的互相交叉、配合和滲透是產生新的發明與發現,解釋新現象,取得科學突破的關鍵條件之一。例如,核物理與軍事技術的交叉產生了原子彈;半導體物理與計算技術的交叉產生了計算機。可以預計,21世紀待人類掌握核聚變能的那一天,一定是核物理、等離子體物理、凝聚態物理和激光技術等學科的交叉和配合的結果。這也是21世紀科學技術的發展趨勢之一。

第8篇:量子力學最新研究范文

為了中國互聯網的成人禮,中國互聯網協會、首都互聯網協會、互聯網實驗室、數字論壇等相關機構早就在籌備紀念活動,今年8月還將召開互聯網大會。

4月的封面故事做了兩手準備。春節前后開始,我就在籌劃這期的“選擇”。做出兩套封面故事來,過程中廣泛面詢北京文化界一些資深讀者的意見,由他們來投票決定最后選擇哪一個封面故事。結果不出我所料,對歷史,這一次,大家是喜新厭舊了。

量子力學顛覆了經典力學的時空觀念。信息時代,也顛覆了工業時代的歷史觀。方興東曾說:“互聯網的時間尺度是以狗年來計算的,我們的一年相當于普通人的七年。也就是說,我在互聯網奮斗了10年,就相當于已經是70狗歲了。”互聯網20年,也就是140個狗年了。

互聯網對紙媒的影響,早已不是青萍之末。在過去一年與讀者的交流中,我們發現,本刊“熱歷史”等把歷史與未來、古典與前衛互聯,最具有互聯網基因和互聯網精神的內容被讀者視為“驚喜”。在紙媒愛好如此奢侈的今天,《看歷史》的讀者,正是熱愛歷史才有未來、擁有現在并創造歷史的人。在這個廟堂觀被打破、草根英雄輩出的時代,《看歷史》決意為讀者提供把握現在、擁有未來的歷史參考讀物,希望與讀者在有更迫切價值的歷史選擇中,成為歷史行動主義者。

第9篇:量子力學最新研究范文

一、21世紀物理學的幾個活躍領域

蒸蒸日上的凝聚態物理學

自從80年代中期發現了所謂高臨界溫度超導體以來,世界上對這種應用潛力很大的新材料的研究熱情和樂觀情緒此起彼伏,時斷時續。這種新材料能在液氮溫區下傳導電流而沒有阻抗。高臨界溫度超導材料的研究仍是今后凝聚態物理學中活躍的領域之一。目前,許多國家的科學工作者仍在爭分奪秒,繼續進行競爭,向更高溫區,甚至室溫溫區超導材料的研究和應用努力。可以預計,這個勢頭今后也不會減弱,此外,高臨界溫度的超導材料的機械性能、韌性強度和加工成材工藝也需進一步提高和解決。科學家們預測,21世紀初,這些技術問題可以得到解決并將有廣泛的應用前景,有可能會引起一場新的工業革命。超導電機、超導磁懸浮列車、超導船、超導計算機等將會面向市場,屆時,世界超導材料市場可望達到2000億美元。

由不同材料的薄膜交替組成的超晶格材料可望成為新一代的微電子、光電子材料。超晶格材料誕生于20世紀70年代末,在短短不到30年的時間內,已逐步揭示出其微觀機制和物理圖像。目前已利用半導體超晶格材料研制成許多新器件,它可以在原子尺度上對半導體的組分摻雜進行人工“設計”,從而可以研究一般半導體中根本不存在的物理現象,并將固態電子器件的應用推向一個新階段。但目前對于其他類型的超晶格材料的制備尚需做進一步的努力。一些科學家預測,下一代的電子器件可能會被微結構器件替代,從而可能會帶來一場電子工業的革命。微結構物理的研究還有許多新的物理現象有待于揭示。21世紀可能會碩果累累,它的前景不可低估。

近年來,兩種與磁阻有關的引起人們強烈興趣的現象就是所謂的巨磁阻和超巨磁阻現象。一般磁阻是物質的電阻率在磁場中會發生輕微的變化,而巨磁和超巨磁可以是幾倍或數千倍的變化。超巨磁現象中令人吃驚的是,在很強的磁場中某些絕緣體會突變為導體,這種原因尚不清楚,就像高臨界溫度超導材料超導性的原因難以捉摸一樣。目前,巨磁和超巨磁實現應用的主要障礙是強磁場和低溫的要求,預計下世紀初在這方面會有很大的進展,并會有誘人的應用前景。

可以預計,新材料的發展是21世紀凝聚態物理學研究重要的發展方向之一。新材料的發展趨勢是:復合化、功能特殊化、性能極限化和結構微觀化。如,成分密度和功能不均勻的梯度材料;可隨空間時間條件而變化的智能材料;變形速度快的壓電材料以及精細陶瓷材料等都將成為下世紀重要的新材料。材料專家預計,21世紀新材料品種可能突破100萬種。

等離子體物理與核聚變

海水中含有大量的氫和它的同位素氘和氚。氘既重氫,氧化氘就是重水,每一噸海水中含有140克重水。如果我們將地球海水中所有的氘核能都釋放出來,那么它所產生的能量足以提供人類使用數百億年。但氘和氚的原子核在高溫下才能聚合起來釋放能量,這個過程稱為熱核反應,也叫核聚變。

核聚變反應的溫度大約需要幾億度,在這樣高的溫度上,氘氚混合燃料形成高溫等離子體態,所以等離子體物理是核聚變反應的理論基矗1986年美國普林斯頓的核聚變研究取得了令人鼓舞的成績,他們在TFTR實驗裝置上進行的超起動放電達到20千電子伏,遠遠超過了“點火”要求。1991年11月在英國卡拉姆的JET實驗裝置上首次成功地進行了氘氚等離子體聚變試驗。在圓形圈內,2億度的溫度下,氘氚氣體相遇爆炸成功,產生了200千瓦的能量,雖然只維持了1.3秒,但這為人類探索新能源——核聚變能的實現邁進了一大步。這是90年代核能研究最有突破性的工作。但目前核聚變反應距實際應用還有相當大的距離,技術上尚有許多難題需要解決,如怎樣將等離子加熱到如此高的溫度?高溫等離子體不能與盛裝它的容器壁相接觸,否則等離子體要降溫,容器也會被燒環,這就是如何約束問題。21世紀初有可能在該領域的研究工作中有所突破。

納米技術向我們走來

所謂納米技術就是在10[-9]米(即十億分之一米)水平上,研究應用原子和分子現象及其結構信息的技術。納米技術的發展使人們有可能在原子分子量級上對物質進行加工,制造出各種東西,使人類開始進入一個可以在納米尺度范圍,人為設計、加工和制造新材料、新器件的時代。粗略的分,納米技術可分為納米物理、納米化學、納米生物、納米電子、納米材料、納米機械和加工等幾方面。

納米材料具有常規材料所不具備的反常特性,如它的硬度、強度,韌性和導電性等都非常高,被譽為“21世紀最有前途的材料”。美國一研究機構認為:任何經營材料的企業,如果現在還不采取措施研究納米材料的開發,今后勢必會處于競爭的劣勢。

納米電子是納米技術與電子學的交叉形成的一門新技術。它是以研究納米級芯片、器件、超高密度信息存儲為主要內容的一門新技術。例如,目前超高密度信息存儲的最高存儲密度為10[12]畢特/平方厘米,其信息儲存量為常規光盤的10[6]倍。

納米機械和加工,也稱為分子機器,它可以不用部件制造幾乎無任何縫隙的物體,它每秒能完成幾十億次操作,可以做人類想做的任何事情,可以制造出人類想得到的任何產品。目前采用分子機器加工已研制出世界上最小的(米粒大小)蒸汽機、微型汽車、微型發電機、微型馬達、微型機器人和微型手術刀。微型機器人可進入血管清理血管壁上的沉積脂肪,殺死癌細胞,修復損壞的組織和基因。微型手術刀只有一根頭發絲的百分之一大小,可以不用 開胸破腹就能完成手術。21世紀的生物分子機器將會出現可放在人腦中的納米計算機,實現人機對話,并且有自身復制的能力。人類還有可能制造出新的智能生命和實現物種再構。

“無限大”和“無限斜系統物理學

“無限大”和“無限斜系統物理學是當今物理學發展的一個非常活躍的領域。天體物理和宇宙物理學就屬于“無限大”系統物理學的范疇,它從早期對太陽系的研究,逐步發展到銀河系,直到對整個宇宙的研究。熱大爆炸宇宙模型作為本世紀后半葉自然科學中四大成就之一是當之無愧的。利用該模型已經成功地解釋宇宙觀測的最新結果。如宇宙膨脹,宇宙年齡下限,宇宙物質的層次結構,宇宙在大尺度范圍是各向同性等重要結果。可以說具有暴脹機制的熱大爆炸宇宙模型已為現代宇宙學奠定了一定的基矗但是到目前為止,關于宇宙的起源問題仍沒有得到解決,暴脹宇宙論也并非十全十美,事實上想一次就能得到一個十分完善的宇宙理論是很困難的,這還有待于進一步的努力和探索。

“無限大”系統物理學還有兩個比較重要的問題是“類星體”和“暗物質”。“類星體”是1961年發現的,一個類星體發出的光相當于幾千個星云,而每個星云相當于1萬億個太陽所發出的光,所以對類星體的研究具有十分重大的意義。60年代末,科學家們發現一個編號為3C271的類星體,一天之內它的能量增加了一倍,到底是什么原因使它的能量增加如此迅速?有待于21世紀去解決。“暗物質”是一種具有引力,看不見,什么光也不發射的物質。宇宙中百分之九十以上的物質是所謂的“暗物質”,這種“暗物質”到底是什么?我們至今仍不清楚,也有待于下世紀去解決。

原子核物理和粒子物理學則屬于“無限斜系統物理學的范疇,它從早期對原子和原子核的研究,逐步發展到對粒子的研究。粒子主要包括強子(中子、質子、超子、л介子、K介子等)、輕子(電子、μ子、τ輕子等)和媒介子(光子、膠子等)。強子是對參與強相互作用粒子的總稱,其數量幾乎占粒子種類的絕大部分;輕子是參與弱相互作用和電磁相互作用的,它們不參與強相互作用;而媒介子是傳遞相互作用的。目前,人們已經知道參與強相互作用的粒子都是由更小的粒子“夸克”組成的,但是至今不能把單個“夸克”分離出來,也沒有觀察到它們可以自由地存在。為什么“夸克”獨立不出來呢?還有一個不能解釋的問題是“非對稱性”,目前我們已有的定理都是對稱的,可是世界是非對稱的,這是一個有待于解決的矛盾。尋找獨立的夸克和電弱統一理論預言的、導致對稱性自發破缺的H粒子、解釋“對稱”與“非對性”的矛盾,是21世紀粒子物理學研究的前沿課題之一。

從表面上看“無限大”系統物理學與“無限斜系統物理學似無必然的聯系。其實不然,宇宙和天體物理學家利用廣義相對論來描述引力和宇宙的“無限大”結構,即可觀察的宇宙范圍;而粒子物理學家則利用量子力學來處理一些“無限斜微觀區域的現象。其實宇宙系統與原子系統在某些方面有著驚人的相似性。預計21世紀“無限大”系統物理學將會與“無限斜系統物理學結合得更加緊密,即宏觀宇宙物理學和微觀粒子物理學整體聯系起來。熱大爆炸宇宙模型就是這種結合的典范,實際上該模型是在粒子物理學中弱電統一理論的基礎上建立起來的。可以預計,這種結合對科技發展和應用都會產生巨大的影響。

二、跨世紀科學技術的發展趨勢

科學技術能否取得重大突破的關鍵取決于基礎科學的發展。所以,首先必須重視基礎科學的研究,不能忽視更不能簡單地以當時基礎科學成果是否有用來衡量其價值。相對論和量子力學建立時好像與其他學科和日常生活無關,直到20世紀中期相對論和量子力學在許多科學領域中引起深刻的變革才引起人們的足夠重視。可以說,20世紀幾乎所有的重大科技突破,像原子能、半導體、激光、計算機等,都是因為有了相對論和量子力學才得以實現。可以說,沒有基礎科學就沒有科學技術、社會和人類的發展。

20世紀重大科技成果的成功經驗證明,不同學科間的互相交叉、配合和滲透是產生新的發明與發現,解釋新現象,取得科學突破的關鍵條件之一。例如,核物理與軍事技術的交叉產生了原子彈;半導體物理與計算技術的交叉產生了計算機。可以預計,21世紀待人類掌握核聚變能的那一天,一定是核物理、等離子體物理、凝聚態物理和激光技術等學科的交叉和配合的結果。這也是21世紀科學技術的發展趨勢之一。

相關熱門標簽
主站蜘蛛池模板: 国产精品毛片在线大全 | 久久久久久九九 | 日本三级中文字幕 | 色综合久久久久 | 国产农村乱子伦精品视频 | 在线观看中文字幕国产 | 国产成人精品男人免费 | 在线精品欧美日韩 | 欧美日韩成人午夜免费 | 国产成人精品日本亚洲专 | 99ri在线视频| 免费一级毛片私人影院a行 免费一级毛片无毒不卡 | 性欧美精品 | 国产亚洲精品成人婷婷久久小说 | 国内精品影院久久久久 | 欧美色成人tv在线播放 | 久久久精品久久久久三级 | 国产视频综合 | 免费区一级欧美毛片 | 欧美最刺激好看的一级毛片 | 最新福利片v国产片 | 在线免费观看一区二区三区 | 在线看片一区 | 亚洲精品久久一区二区无卡 | 亚洲成人免费在线观看 | 400部大量精品情侣网站 | 亚洲成人在线视频网站 | 国产精品特级毛片一区二区三区 | 91国内精品久久久久免费影院 | 欧美成人高清视频 | 国产成人欧美一区二区三区的 | 亚洲免费在线视频 | 国产午夜精品不卡观看 | 成人久久18免费游戏网站 | 亚洲精品视频免费 | 99香蕉网| 久青草免费在线视频 | 国产精品人伦久久 | 六月丁香婷婷色狠狠久久 | 国产精品视频免费播放 | 国产真实乱子伦精品视 |